题目内容

如图:在平行四边形ABCD中,AC的垂直平分线分别交CD、AB于E、F两点,交AC于O点,试判断四边形AECF的形状,并说明理由.
考点:菱形的判定,平行四边形的性质
专题:
分析:根据平行四边形性质推出AD∥BC,得出∠DAO=∠ACF,∠AEO=∠CFO,根据AAS证△AEO≌△CFO,推出OE=OF即可.
解答:证明::四边形AECF的形状是菱形,
理由是:∵平行四边形ABCD,
∴AD∥BC,
∴∠DAO=∠ACF,∠AEO=∠CFO,
∵EF过AC的中点O,
∴OA=OC,
在△AEO和△CFO中,
∠EAO=∠OCF
∠AEO=∠CFO
OA=OC

∴△AEO≌△CFO(AAS),
∴OE=OF,
∵OA=CO,
∴四边形AECF是平行四边形,
∵EF⊥AC,
∴四边形AECF是菱形.
点评:本题考查了平行线性质,平行四边形的性质,矩形、菱形的判定等知识点的应用,能熟练地运用性质进行推理是解此题的关键,题型较好,具有一定的代表性,但难度不大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网