ÌâÄ¿ÄÚÈÝ
3£®¡¾½áÂÛ¡¿ÒÑÖªÁ½ÌõÖ±ÏßL1£ºy=k1x+b1£¬L2£ºk2x+b2£¬ÈôL1¡ÍL2£¬ÔòÓÐk1•k2=-1£¬·´Ö®Ò²³ÉÁ¢£®¡¾Ó¦Óá¿£¨1£©ÒÑÖªy=3x+1Óëy=kx-1´¹Ö±£¬Çók¼°ËüÃǵĽ»µã×ø±ê£»
£¨2£©ÒÑÖªÖ±ÏßM¾¹ýµãA£¨2£¬3£©£¬ÇÒÓëy=-$\frac{1}{2}$x+3´¹Ö±£¬ÇóÖ±ÏßMµÄ½âÎöʽ£®
¡¾Ì½¾¿¡¿£¨3£©ÔÚͬһֱ½Ç×ø±êϵÉÏ£¬¸ø¶¨4¸öµãA£¨1£¬3£©¡¢B£¨-3£¬0£©¡¢C£¨0£¬-4£©ºÍD£¨4£¬-1£©£¬ÈÎÒâÁ¬½ÓÆäÖÐÁ½µãÄܵõ½¶àÉÙÌõ²»Í¬µÄÖ±Ïߣ¿ÕâЩֱÏßÖй²ÓжàÉÙ×黥Ïà´¹Ö±¹ØÏµ£¿²¢Ñ¡ÔñÆäÖÐÒ»×黥Ïà´¹Ö±¹ØÏµ½øÐÐÖ¤Ã÷£®
·ÖÎö £¨1£©¸ù¾ÝÌâÖеĽáÂÛÒ×µÃ3k=-1£¬Ôò¿É½âµÃk=-$\frac{1}{3}$£¬È»ºóͨ¹ý·½³Ì×é$\left\{\begin{array}{l}{y=3x+1}\\{y=-\frac{1}{3}x-1}\end{array}\right.$µÃËüÃǵĽ»µã×ø±ê£»
£¨2£©¸ù¾ÝÌâÖеĽáÂÛÒ×µÃÖ±ÏßMµÄ½âÎöʽÖÐÒ»´ÎÏîϵÊýΪ2£¬ÔòÖ±ÏßMµÄ½âÎöʽ¿ÉÉèΪy=2x+b£¬È»ºó°ÑAµã×ø±ê´úÈëÇó³öb¼´¿É£»
£¨3£©Á½µãÈ·¶¨Ò»Ö±Ïߣ¬ÔÙ×ø±êϵÖÐÃè³ö¸÷µã£¬¼´¿ÉµÃµ½Á¬½ÓÆäÖÐÁ½µãÄܵõ½6Ìõ²»Í¬µÄÖ±Ïߣ¬ÕâЩֱÏßÖй²ÓÐ5×黥Ïà´¹Ö±¹ØÏµ£¬ÔÙѡȡһ×é´¹Ö±¹ØÏµ½øÐÐÖ¤Ã÷£ºÏÈÀûÓôý¶¨ÏµÊý·¨Çó³öÁ½Ö±ÏߵĽâÎöʽ£¬È»ºó¸ù¾ÝÌâÖеĽáÂÛÅжÏÁ½Ö±ÏßÊÇ·ñ´¹Ö±£®
½â´ð ½â£º£¨1£©¡ßy=3x+1Óëy=kx-1´¹Ö±£¬
¡à3k=-1£¬
¡àk=-$\frac{1}{3}$£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=3x+1}\\{y=-\frac{1}{3}x-1}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-\frac{3}{5}}\\{y=-\frac{4}{5}}\end{array}\right.$£¬
¡àËüÃǵĽ»µã×ø±êΪ£¨-$\frac{3}{5}$£¬-$\frac{4}{5}$£©£»
£¨2£©¡ß¹ýµãAÖ±ÏßÓëy=-$\frac{1}{2}$x+3´¹Ö±£¬
¡àÉè¹ýµãAÖ±ÏßµÄÖ±Ïß½âÎöʽΪy=2x+b£¬
°ÑA£¨2£¬3£©´úÈëµÃ£¬b=-1£¬
¡à½âÎöʽΪy=2x-1£»
£¨3£©Á¬½ÓÆäÖÐÈÎÒâÁ½µãÄܵõ½6ÌõÖ±Ïߣ¬ÕâЩֱÏßÖй²ÓÐ5×黥Ïà´¹Ö±¹ØÏµ£¬ËüÃÇ·Ö±ðÊÇ£ºAB¡ÍBC£¬BC¡ÍCD£¬CD¡ÍDA£¬DA¡ÍAB£¬AC¡ÍBD£®
ÉèÖ±ÏßBCΪ£ºy=mx-4£¬
½«B£¨-3£¬0£©´úÈëµÃ0=-3m-4£¬½âµÃm=-$\frac{4}{3}$£¬
ÉèÖ±ÏßCDΪ£ºy=nx-4£¬
½«D£¨4£¬-1£©´úÈëµÃ£º-1=4n-4£¬½âµÃn=$\frac{3}{4}$£¬
¡àmn=-$\frac{4}{3}$¡Á$\frac{3}{4}$=-1£¬
¡àBC¡ÍCD£®
µãÆÀ ±¾Ì⿼²éÁËÁ½Ö±ÏßÏཻ»òƽÐÐÎÊÌ⣺Á½ÌõÖ±ÏߵĽ»µã×ø±ê£¬¾ÍÊÇÓÉÕâÁ½ÌõÖ±ÏßÏà¶ÔÓ¦µÄÒ»´Îº¯Êý±í´ïʽËù×é³ÉµÄ¶þÔªÒ»´Î·½³Ì×éµÄ½â£»ÈôÁ½ÌõÖ±ÏßÊÇÆ½ÐеĹØÏµ£¬ÄÇôËûÃǵÄ×Ô±äÁ¿ÏµÊýÏàͬ£¬¼´kÖµÏàͬ£®Ò²¿¼²éÁËж¨Ò壮
| ÏîÄ¿ ÈËÔ± | ÔĶÁ | ˼ά | ±í´ï |
| ¼× | 93 | 86 | 73 |
| ÒÒ | 95 | 81 | 79 |
£¨2£©¸ù¾Ýʵ¼ÊÐèÒª£¬¹«Ë¾½«ÔĶÁ¡¢Ë¼Î¬ºÍ±í´ïÄÜÁ¦ÈýÏî²âÊԵ÷ְ´3£º5£º2µÄ±ÈÈ·¶¨Ã¿È˵Ä×îºó³É¼¨£¬Èô°´´Ë³É¼¨Ôڼס¢ÒÒÁ½ÈËÖмÓÃÒ»ÈË£¬Ë½«±»Â¼Óã¿
| A£® | 61¡ã | B£® | 63¡ã | C£® | 65¡ã | D£® | 67¡ã |