题目内容

2.已知点A(1,y1),B(-2,y2),C(-$\sqrt{3}$,y2)都在反比例函数y=$\frac{{-k}^{2}-1}{x}$(k为常数)的图象上,则y1,y2,y3的大小关系是y1<y2<y3

分析 先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据各点横坐标的值判断出各点所在的象限.进而可得出结论.

解答 解:∵反比例函数y=$\frac{{-k}^{2}-1}{x}$(k为常数)中,-k2-1<0,
∴函数图象的两个分式分别位于二四象限,且在每一象限内y随x的增大而增大.
∵-2<-$\sqrt{3}$<0,1>0,
∴点B、C在第二象限,点A在第四象限,
∴y1<y2<y3
故答案为:y1<y2<y3

点评 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网