题目内容
1.| A. | 直角三角形 | B. | 平行四边形 | C. | 菱形 | D. | 等腰梯形 |
分析 将剪开的△ABE绕E点旋转180°,EC与EB重合,得到直角三角形;把△ABE平移,使AB与DC重合,则得到平行四边形;把△ABE的顶点E与C重合,B与D重合,与四边形AECD不重叠拼在一起,组成等腰梯形;不能得到菱形;即可得出结论.
解答
解:将△ABE绕E点旋转180°,EC与EB重合,得到直角三角形,故选项A正确;
把△ABE平移,使AB与DC重合,则得到平行四边形,故选项B正确;
把△ABE的顶点E与C重合,B与D重合,与四边形AECD不重叠拼在一起,组成等腰梯形,故选项D正确;
不能得到菱形,故选项C错误.
故选C.
点评 本题考查了图形的剪拼、正方形的性质、平行四边形的判定、等腰梯形的判定等知识;本题难度适中,熟练掌握正方形的性质是解决问题的关键.
练习册系列答案
相关题目
13.教师节来临,某校举办了以感恩为主题的贺卡制作比赛,赛后整理参赛学生的成绩,并制作成如表:
请根据如图表提供的信息解答下列问题:
(1)表中a、b、c所表示的数分别是:a=95,b=90,c=0.3;
(2)参赛学生比赛成绩的中位数落在哪个分数段?求出参赛学生成绩的平均得分;
(3)如果比赛成绩80分以上(含80分)可获得奖励,那么获奖率是多少?
| 分数段/分 | 组中值 | 频数(人数) | 频率 |
| 60≤x<70 | 65 | 30 | 0.15 |
| 70≤x<80 | 75 | b | 0.45 |
| 80≤x<90 | 85 | 60 | c |
| 90≤x<100 | a | 20 | 0.1 |
(1)表中a、b、c所表示的数分别是:a=95,b=90,c=0.3;
(2)参赛学生比赛成绩的中位数落在哪个分数段?求出参赛学生成绩的平均得分;
(3)如果比赛成绩80分以上(含80分)可获得奖励,那么获奖率是多少?
10.已知a>b,若c是任意实数,则下列不等式中总成立的是( )
| A. | a+c<b+c | B. | a-c>b-c | C. | ac<bc | D. | ac>bc |