题目内容

11.如图,∠ABC=45°,△ADE是等腰直角三角形,AE=AD,顶点A、D分别在∠ABC的两边BA、BC上滑动(不与点B重合),△ADE的外接圆交BC于点F,点D在点F的右侧,O为圆心.
(1)求证:△ABD≌△AFE
(2)若AB=4$\sqrt{2}$,8$\sqrt{2}$<BE≤4$\sqrt{13}$,求⊙O的面积S的取值范围.

分析 (1)根据等腰直角三角形得∠ADE=45°,则∠ABD=∠AFE,再利用同弧所对的圆周角相等可知:∠AEF=∠ADB,根据AAS证明△ABD≌△AFE;
(2)由全等可知:BD=EF,∠EAF=∠BAD,因此设BD=x,则EF=x,根据等式的性质得∠BAF=∠EAD=90°,则△ABF是等腰直角三角形,计算得BF=8,则DF=x-8,根据勾股定理得BE2=EF2+BF2,求出x的取值为8<x≤12,同时由圆的面积公式计算得:S=$\frac{π}{2}$(x-4)2+8π,根据二次函数的增减性得出:16π<S≤40π.

解答 解:(1)∵△ADE是等腰直角三角形,AE=AD,
∴∠EAD=90°,∠AED=∠ADE=45°,
∵$\widehat{AE}=\widehat{AE}$,
∴∠ADE=∠AFE=45°,
∵∠ABD=45°,
∴∠ABD=∠AFE,
∵$\widehat{AF}=\widehat{AF}$,
∴∠AEF=∠ADB,
∵AF=AF,
∴△ABD≌△AFE;
(2)∵△ABD≌△AFE,
∴BD=EF,∠EAF=∠BAD,
∴∠BAF=∠EAD=90°,
∵$AB=4\sqrt{2}$,
∴BF=$\frac{AB}{cos∠ABF}$=$\frac{4\sqrt{2}}{cos45°}$=8,
设BD=x,则EF=x,DF=x-8,
∵BE2=EF2+BF2,$8\sqrt{2}$<BE≤$4\sqrt{13}$,
∴128<EF2+82≤208,
∴8<EF≤12,即8<x≤12,
则$S=\frac{π}{4}D{E^2}=\frac{π}{4}[{{x^2}+{{(x-8)}^2}}]=\frac{π}{2}{(x-4)^2}+8π$,
∵$\frac{π}{2}$>0,
∴抛物线的开口向上,
又∵对称轴为直线x=4,
∴当8<x≤12时,S随x的增大而增大,
∴16π<S≤40π.

点评 本题是圆的综合题,综合考查了等腰直角三角形、三角函数和二次函数及圆的性质;本题要想求出圆面积的取值,从圆的面积公式入手,知道圆的面积与直径DE有关,因此可设DE或与DE有关系的边为x,根据等量关系列式得一函数,再利用该函数的最值问题求出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网