题目内容

如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为(  )
A、3
B、3
2
C、2
3
D、3
3
考点:轴对称-最短路线问题
专题:
分析:由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值.
解答: 解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,
∴BD⊥AC,EC=3,
连接AE,线段AE的长即为PE+PC最小值,
∵点E是边BC的中点,
∴AE⊥BC,
∴AE=
AC2-EC2
=
62-32
=3
3

∴PE+PC的最小值是3
3

故选D.
点评:本题考查的是轴对称-最短路线问题,熟知等边三角形的性质是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网