ÌâÄ¿ÄÚÈÝ
5£®£¨1£©Çó³öµãA1µÄ×ø±ê£¬²¢ÅжϵãA1ÊÇ·ñÔÚÖ±ÏßlÉÏ£»
£¨2£©Çó³ö±ßA1C1ËùÔÚÖ±ÏߵĽâÎöʽ£»
£¨3£©ÔÚ×ø±êÆ½ÃæÄÚÕÒÒ»µãP£¬Ê¹µÃÒÔP¡¢A1¡¢C1¡¢MΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬ÇëÖ±½Óд³öPµã×ø±ê£®
·ÖÎö £¨1£©Èçͼ×÷A1H¡ÍxÖáÓÚH£®ÔÚRt¡÷A1OHÖУ¬ÓÉA1H=3£¬¡ÏA1OH=60¡ã£¬¿ÉµÃOH=A1H•tan30¡ã=$\sqrt{3}$£¬Çó³öµãA×ø±ê¼´¿É½â¾öÎÊÌ⣻
£¨2£©ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣻
£¨3£©·ÖÈýÖÖÇéÐÎÌÖÂÛ¼´¿É½â¾öÎÊÌ⣻
½â´ð ½â£º£¨1£©
Èçͼ×÷A1H¡ÍxÖáÓÚH£®
ÔÚRt¡÷A1OHÖУ¬¡ßA1H=3£¬¡ÏA1OH=60¡ã£¬
¡àOH=A1H•tan30¡ã=$\sqrt{3}$£¬
¡àA1£¨$\sqrt{3}$£¬3£©£¬
¡ßx=$\sqrt{3}$ʱ£¬y=-$\frac{\sqrt{3}}{3}$¡Á$\sqrt{3}$+4=3£¬
¡àA1ÔÚÖ±Ïßy=-$\frac{\sqrt{3}}{3}$x+4ÉÏ£®
£¨2£©¡ßA1£¨$\sqrt{3}$£¬3£©£¬C1£¨2$\sqrt{3}$£¬0£©£¬
ÉèÖ±ÏßA1C1µÄ½âÎöʽΪy=kx+b£¬ÔòÓÐ$\left\{\begin{array}{l}{\sqrt{3}k+b=3}\\{2\sqrt{3}k+b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\sqrt{3}}\\{b=6}\end{array}\right.$£¬
¡àÖ±ÏßA1C1µÄ½âÎöʽΪy=-$\sqrt{3}$x+6£®
£¨3£©¡ßM£¨4$\sqrt{3}$£¬0£©£¬A1£¨$\sqrt{3}$£¬3£©£¬C1£¨2$\sqrt{3}$£¬0£©£¬
ÓÉͼÏó¿ÉÖª£¬µ±ÒÔP¡¢A1¡¢C1¡¢MΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐÎʱ£¬P1£¨3$\sqrt{3}$£¬3£©£¬P2£¨5$\sqrt{3}$£¬-3£©£¬P3£¨-$\sqrt{3}$£¬3£©£®
µãÆÀ ±¾Ì⿼²éÒ»´Îº¯Êý×ÛºÏÌ⣮ƽÐÐËıßÐεÄÅж¨ºÍÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨µÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ÊôÓÚÖп¼³£¿¼ÌâÐÍ£®