题目内容

10.从-1,0,1,2,3这5个数中,随机抽取一个数记为a,使得二次函数y=2x2-4x-1当x>a时,y随x 的增大而增大,且使关于x的分式方程$\frac{1-ax}{x-2}$+2=$\frac{1}{2-x}$有整数解的概率为$\frac{1}{5}$.

分析 根据二次函数y=2x2-4x-1得到开口向上且对称轴为直线x=-$\frac{-4}{2×2}$=2,得到a=2或3,由于解关于x的分式方程$\frac{1-ax}{x-2}$+2=$\frac{1}{2-x}$$\frac{1}{2-x}$有整数解,得到a=3,于是得到结论.

解答 解:∵二次函数y=2x2-4x-1的开口向上且对称轴为直线x=-$\frac{-4}{2×2}$=2,
∴当x>2时,y随x 的增大而增大,
∵当x>a时,y随x 的增大而增大,
∴a=2或3,
∵解关于x的分式方程$\frac{1-ax}{x-2}$+2=$\frac{1}{2-x}$得x=$\frac{2}{2-a}$,
∵关于x的分式方程$\frac{1-ax}{x-2}$+2=$\frac{1}{2-x}$有整数解,
∴a=3,
∴概率为$\frac{1}{5}$,
故答案为:$\frac{1}{5}$.

点评 本题考查了概率的公式,二次函数的性质,解分式方程,熟练掌握二次函数的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网