题目内容

如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.

(1)用含x的代数式表示AC+CE的长.

(2)请问点C满足什么条件时,AC+CE的值最小?并求出最小值;

(3)根据(2)中的规律和结论,请构图求出代数式的最小值.

(1);(2)10;(3)13. 【解析】试题分析: 试题分析:(1)由于△ABC和△CDE都是直角三角形,故AC,CE可由勾股定理求得; (2)若点C不在AE的连线上,根据三角形中任意两边之和>第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小; (3)由(1)(2)的结果可作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网