题目内容
4.化简:(x-2)•$\sqrt{-\frac{1}{x-2}}$.分析 先确定出x-2的正负,然后依据再将括号外的因式乘到括号内即可.
解答 解:∵-$\frac{1}{x-2}$≥0,
∴x-2<0.
∴原式=-$\sqrt{(x-2)^{2}•(-\frac{1}{x-2})}$=-$\sqrt{2-x}$.
点评 本题主要考查的是二次根式的性质和化简,确定出x-2<0是解题的关键.
练习册系列答案
相关题目
13.正六边形的每一个内角的度数是( )
| A. | 150° | B. | 120° | C. | 90° | D. | 60° |
14.已知方程mx2-2(1-m)x+m=0有实数根,则m满足的条件是( )
| A. | m≤$\frac{1}{2}$且m≠0 | B. | m<$\frac{1}{2}$且m≠0 | C. | m<$\frac{1}{2}$ | D. | m≤$\frac{1}{2}$ |