题目内容

13.如图是一个水平放置的油管的截面图,其中油面的宽AB为16cm,油面的深度CD=4cm,求油管截面圆的半径.

分析 连接OA,根据垂径定理得到AC=8cm,设油管截面圆的半径为r,根据勾股定理列出关于r的方程,解方程得到答案.

解答 解:连接OA,
∵OD⊥AB,
∴AC=BC=$\frac{1}{2}$AB=8cm,
设油管截面圆的半径为r,
则OA2=OC2+AC2,即r2=(r-4)2+82
解得r=10.
答:油管截面圆的半径为10cm.

点评 本题考查的是垂径定理和勾股定理的应用,掌握垂直于弦的直径平分弦是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网