ÌâÄ¿ÄÚÈÝ
10£®ÔĶÁÒÔÏÂÄÚÈÝÒ»¸ö¶àÏîʽµÄ´ÎÊýΪm£¬ÏîÊýΪn£¬ÎÒÃdzÆÕâ¸ö¶àÏîʽΪm´Î¶àÏîʽ»òÕßm´ÎnÏîʽ£¬ÀýÈ磺5x3y2-2x2y+3xyΪÎå´ÎÈýÏîʽ£¬2x2-2y2+3xy+2xΪ¶þ´ÎËÄÏîʽ£®
£¨1£©-3xy+2x2y2-4x3y3+3ΪÁù´ÎËÄÏîʽ£®
£¨2£©Èô¹ØÓÚx¡¢yµÄ¶àÏîʽA=ax2-3xy+2x£¬B=bxy-4x2+2y£¬ÒÑÖª2A-3BÖв»º¬¶þ´ÎÏÇóa-bµÄÖµ£®
£¨3£©ÒÑÖª¹ØÓÚxµÄ¶þ´Î¶àÏîʽ£¬a£¨x3-x2+3x£©+b£¨2x2+x£©+x3-5ÔÚx=2ʱ£¬ÖµÊÇ-17£¬Çóµ±x=-2ʱ£¬¸Ã¶àÏîʽµÄÖµ£®
·ÖÎö £¨1£©¸ù¾ÝÒ»¸ö¶àÏîʽµÄ´ÎÊýΪm£¬ÏîÊýΪn£¬ÎÒÃdzÆÕâ¸ö¶àÏîʽΪm´Î¶àÏîʽ»òÕßm´ÎnÏîʽ£¬¼´¿É½â´ð£»
£¨2£©¼ÆËã³ö2A-3B£¬¸ù¾Ý²»º¬¶þ´ÎÏ¼´¶þ´ÎÏîµÄϵÊýΪ0£¬Çó³öa£¬bµÄÖµ£¬¼´¿É½â´ð£»
£¨3£©ÏȽ«¹ØÓÚxµÄ¶þ´Î¶àÏîʽ±äÐΣ¬¸ù¾Ý¶þ´Î¶àÏîʽµÄÌØµãÇó³öa¡¢bµÄÖµ£¬½ø¶øÇó³öµ±x=-2ʱ£¬¸Ã¶àÏîʽµÄÖµ£®
½â´ð ½â£º£¨1£©-3xy+2x2y2-4x3y3+3ΪÁù´ÎËÄÏîʽ£®¹Ê´ð°¸Îª£ºÁù£¬ËÄ£»
£¨2£©2A-3B=2£¨ax2-3xy+2x£©-3£¨bxy-4x2+2y£©=£¨2a+12£©x2-£¨6+3b£©xy+4x-6y£¬
¡ß2A-3BÖв»º¬¶þ´ÎÏ
¡à2a+12=0£¬6+3b=0£¬
¡àa=-6£¬b=-2£¬
¡àa-b=36
£¨3£©a£¨x3-x2+3x£©+b£¨2x2+x£©+x3-5=£¨a+1£©x3+£¨2b-a£©x2+£¨3a+b£©x-5£®
a+1=0£¬a=-1£®
¡à-17=£¨a+1£©x3+£¨2b-a£©x2+£¨3a+b£©x-5
=£¨-1+1£©x3+£¨2b+1£©x2+[3£¨-1£©+b]x-5
=£¨2b+1£©x2+£¨b-3£©x-5
=£¨2b+1£©¡Á22+£¨b-3£©¡Á2-5
=10b-7£¬b=-1£®
¡à¹ØÓÚxµÄ¶þ´Î¶àÏîʽa£¨x3-x2+3x£©+b£¨2x2+x£©+x3-5
=£¨2b+1£©x2+£¨b-3£©x-5
=[2¡Á£¨-1£©+1£©x2+£¨-1-3£©x-5
=-x2-4x-5
=-£¨-2£©2-4¡Á£¨-2£©-5
=-1£®
µãÆÀ ±¾Ì⿼²éÁ˶àÏîʽ£¬½â¾ö±¾ÌâµÄ¹Ø¼üÊÇÊì¼Ç¶àÏîʽµÄÓйظÅÄ
| A£® | $\frac{x}{y}=\frac{2}{3}$ | B£® | $\frac{x}{3}=\frac{y}{2}$ | C£® | $\frac{x}{2}=\frac{3}{y}$ | D£® | $\frac{x}{3}=\frac{2}{y}$ |
| A£® | ÕýÓÐÀíÊý | B£® | ·ÇÕýÓÐÀíÊý | C£® | Áã | D£® | ¸ºÓÐÀíÊý |
| Ô²µÄÄÚ½ÓÕý¶à±ßÐÎ | ±ß³¤ | ±ßÐľà | ÖÐÐÄ½Ç | Ãæ»ý |
| ÕýÈý½ÇÐÎ | $\sqrt{3}$ | 1 | 120¡ã | 3$\sqrt{3}$ |
| Õý·½ÐÎ | 2$\sqrt{2}$ | $\sqrt{2}$ | 90¡ã | 8 |
| ÕýÁù±ßÐÎ | 2 | $\sqrt{3}$ | 60¡ã | 6$\sqrt{3}$ |