题目内容

12.计算下列各题:
(1)2sin45°-$\frac{1}{{\sqrt{2}+1}}$+sin230°+cos260°;
(2)$\sqrt{12}$-3tan30°+(π-4)0+${({-\frac{1}{2}})^{-1}}$.

分析 (1)将三角函数值代入原式,-$\frac{1}{\sqrt{2}+1}$分子、分母同时乘以$\sqrt{2}$-1,即可得出结论;
(2)任何非0数的0次方都等于0,-1次方为倒数,将tan30°代入即可得出结论.

解答 解:(1)原式=2×$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}-1}{(\sqrt{2}+1)×(\sqrt{2}-1)}$+${(\frac{1}{2})}^{2}$+${(\frac{1}{2})}^{2}$,
=$\sqrt{2}$-$\sqrt{2}$+1+$\frac{1}{4}$+$\frac{1}{4}$,
=1$\frac{1}{2}$.
(2)原式=2$\sqrt{3}$-3×$\frac{\sqrt{3}}{3}$+1+$\frac{1}{-\frac{1}{2}}$,
=2$\sqrt{3}$-$\sqrt{3}$+1-2,
=$\sqrt{3}$-1.

点评 本题考查了三角函数、幂函数以及二次根式的运算,解题的关键是熟记特殊角的三角函数值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网