题目内容
7.分析 根据AB=AC以及tan$∠C=\frac{4}{3}$,可以假设AB=BC=4a,求出DE,CD即可.
解答
解:如图作DM⊥BC,EN⊥BC垂足分别为M.N,设AB=BC=4a,
∵tan∠C=$\frac{DM}{CM}$=$\frac{4}{3}$,
∴CM=3a,CD=5a,
∵EB=EC,EN⊥BC,
∴NC=BN=2a,
∵tan∠C=$\frac{EN}{CN}$=$\frac{4}{3}$,
∴$\frac{EN}{2a}=\frac{4}{3}$,
∴EN=$\frac{8a}{3}$,
∴EC=$\sqrt{E{N}^{2}+C{N}^{2}}$=$\frac{10a}{3}$,
∴DE=CD-EC=5a-$\frac{10a}{3}$=$\frac{5a}{3}$,
∴$\frac{DE}{CD}$=$\frac{\frac{5a}{3}}{5a}$=$\frac{1}{3}$.
点评 本题考查直角梯形的性质、勾股定理、等腰三角形的性质等知识,设未知数,列出相应的代数式是解决问题的关键.
练习册系列答案
相关题目