题目内容

19.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则tan∠EAF的值是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.2D.5

分析 先根据矩形的性质得CD=AB=8,AD=BC=10,再根据折叠的性质得AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=BC-BF=4,设EF=x,则DE=x,CE=CD-DE=8-x,在Rt△CEF中,根据勾股定理得到42+(8-x)2=x2,解得x=5,即EF=5,然后在Rt△AEF中根据正切的定义求解.

解答 解:∵四边形ABCD为矩形,
∴CD=AB=8,AD=BC=10,
∵折叠矩形ABCD的一边AD,使点D落在BC边的点F处,
∴AF=AD=10,DE=EF,∠AFE=∠D=90°,
在Rt△ABF中,BF=$\sqrt{A{F}^{2}-A{B}^{2}}$=6,
∴FC=BC-BF=4,
设EF=x,则DE=x,CE=CD-DE=8-x,
在Rt△CEF中,
∵CF2+CE2=EF2
∴42+(8-x)2=x2
解得:x=5,
∴EF=5,
在Rt△AEF中,tan∠EAF=$\frac{EF}{AF}$=$\frac{5}{10}$=$\frac{1}{2}$;
故选:A.

点评 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网