题目内容

10.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点当PC+PD最小时,∠PCD=(  )°.
A.60°B.45°C.30°D.15°

分析 连接BD交MN于P′,如图,利用两点之间线段最短可得到此时P′C+P′D最短,即点P运动到P′位置时,PC+PD最小,然后根据正方形的性质求出∠P′CD的度数即可.

解答 解:连接BD交MN于P′,如图,
∵MN是正方形ABCD的一条对称轴,
∴P′B=P′C,
∴P′C+P′D=P′B+P′D=BD,
∴此时P′C+P′D最短,即点P运动到P′位置时,PC+PD最小,
∵点P′为正方形的对角线的交点,
∴∠P′CD=45°.
故选B.

点评 本题考查了最短路线问题:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.也考查了正方形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网