题目内容
12.已知直线y=2x与y=-x+b的交点为(-1,a),则方程组$\left\{\begin{array}{l}{y-2x=0}\\{y+x-b=0}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$.分析 根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.
解答 解:把(-1,a)代入y=2x得a=-2,
则直线y=2x与y=-x+b的交点为(-1,-2),
则方程组$\left\{\begin{array}{l}{y-2x=0}\\{y+x-b=0}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$.
点评 本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.
练习册系列答案
相关题目