ÌâÄ¿ÄÚÈÝ
20£®ÔÚÊýѧѧϰ¹ý³ÌÖУ¬Í¨³£ÊÇÀûÓÃÒÑÓеÄ֪ʶÓë¾Ñ飬ͨ¹ý¶ÔÑо¿¶ÔÏó½øÐй۲졢ʵÑé¡¢ÍÆÀí¡¢³éÏó¸ÅÀ¨£¬·¢ÏÖÊýѧ¹æÂÉ£¬½ÒʾÑо¿¶ÔÏóµÄ±¾ÖÊÌØÕ÷£®±ÈÈ硰ͬµ×ÊýÃݵij˷¨·¨Ôò¡±µÄѧϰ¹ý³ÌÊÇÀûÓÃÓÐÀíÊýµÄ³Ë·½¸ÅÄîºÍ³Ë·¨½áºÏÂÉ£¬ÓÉ¡°ÌØÊ⡱µ½¡°Ò»°ã¡±½øÐгéÏó¸ÅÀ¨µÄ£º
22¡Á23=25£¬23¡Á24=27£¬22¡Á26=28¡⇒2m¡Á2n=2m+n¡⇒am¡Áan=am+n£¨m¡¢n¶¼ÊÇÕýÕûÊý£©£®
ÎÒÃÇÒàÖª£º$\frac{2}{3}£¼\frac{2+1}{3+1}$£¬$\frac{2}{3}£¼\frac{2+2}{3+2}$£¬$\frac{2}{3}£¼\frac{2+3}{3+3}$£¬$\frac{2}{3}£¼\frac{2+4}{3+4}$¡
£¨1£©ÇëÄã¸ù¾ÝÉÏÃæµÄ²ÄÁÏ£¬ÓÃ×Öĸa¡¢b¡¢c¹éÄɳöa¡¢b¡¢c£¨a£¾b£¾0£¬c£¾0£©Ö®¼äµÄÒ»¸öÊýѧ¹ØÏµÊ½£®
£¨2£©ÊÔÓã¨1£©ÖÐÄã¹éÄɵÄÊýѧ¹ØÏµÊ½£¬½âÊÍÏÂÃæÉú»îÖеÄÒ»¸öÏÖÏ󣺡°Èôm¿ËÌÇË®ÀﺬÓÐn¿ËÌÇ£¬ÔÙ¼ÓÈëk¿ËÌÇ£¨ÈÔ²»±¥ºÍ£©£¬ÔòÌÇË®¸üÌðÁË¡±£®
·ÖÎö £¨1£©¸ù¾ÝÒÑÖª²»µÈʽ¿ÉÕÒ³ö¹æÂÉ£¬ÒòΪ3£¾2£¾0£¬1£¾0£¬2£¾0£¬3£¾0£¬$\frac{2}{3}£¼\frac{2+1}{3+1}$£¬$\frac{2}{3}£¼\frac{2+2}{3+2}$£¬$\frac{2}{3}£¼\frac{2+3}{3+3}$£¬$\frac{2}{3}£¼\frac{2+4}{3+4}$¡¹Êa£¾b£¾0£¬c£¾0£¬Ôò$\frac{b}{a}$£¼$\frac{b+c}{a+c}$£»
£¨2£©ÒòΪ$\frac{n}{m}$£¼$\frac{n+k}{m+k}$£¬ËµÃ÷ÔÀ´ÌÇË®ÖÐÌǵÄÖÊÁ¿·ÖÊý$\frac{n}{m}$СÓÚ¼ÓÈëk¿ËÌǺóÌÇË®ÖÐÌǵÄÖÊÁ¿·ÖÊý$\frac{n+k}{m+k}$£¬ËùÒÔÌÇË®¸üÌðÁË£®
½â´ð £¨1£©Äã¸ù¾ÝÉÏÃæµÄ²ÄÁϿɵãº$\frac{b}{a}$£¼$\frac{b+c}{a+c}$£®
˵Ã÷£º¡ß$\frac{b}{a}$-$\frac{b+c}{a+c}$=$\frac{b£¨a+c£©}{a£¨a+c£©}$-$\frac{a£¨b+c£©}{a£¨a+c£©}$=$\frac{ab+bc-ab-ac}{a£¨a+c£©}$=$\frac{bc-ac}{a£¨a+c£©}$=$\frac{c£¨b-a£©}{a£¨a+c£©}$£¬
ÓÖ¡ßa£¾b£¾0£¬c£¾0£¬
¡àa+c£¾0£¬b-a£¼0£¬
¡à$\frac{c£¨b-a£©}{a£¨a+c£©}$£¼0£¬
¡à$\frac{b}{a}$-$\frac{b+c}{a+c}$£¼0£¬
¼´£º$\frac{b}{a}$£¼$\frac{b+c}{a+c}$³ÉÁ¢£»
£¨2£©¡ßÔÀ´ÌÇË®ÖÐÌǵÄÖÊÁ¿·ÖÊý=$\frac{n}{m}$£¬
¼ÓÈëk¿ËÌǺóÌÇË®ÖÐÌǵÄÖÊÁ¿·ÖÊý+$\frac{n+k}{m+k}$£¬
ÓÉ£¨1£©$\frac{b}{a}$£¼$\frac{b+c}{a+c}$¿ÉµÃ$\frac{n}{m}$£¼$\frac{n+k}{m+k}$£¬
ËùÒÔÌÇË®¸üÌðÁË£®
µãÆÀ ±¾Ì⿼²éÁË·ÖʽµÄ»ìºÏÔËË㣬¶Á¶®ÌâÄ¿ÐÅÏ¢£¬ÊìÁ·ÕÆÎÕ²¢Áé»îÔËÓÃÕûʽµÄ¼Ó¼õ»ìºÏÔËËã½øÐмÆËãÊǽâÌâµÄ¹Ø¼ü£¬Ò²ÊDZ¾ÌâµÄÄѵ㣮
| A£® | »¥Îªµ¹Êý | B£® | »¥ÎªÏà·´Êý | C£® | a=bÇÒb=0 | D£® | ab=0 |