题目内容

4.如图,在矩形ABCD内放入六个小正方形后形成一个中心对称图形,其中顶点E、F分别在边BC、AD上,则长AD与宽AB的比值为(  )
A.6:5B.13:10C.8:7D.4:3

分析 连结EF,作IJ⊥LJ于J,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是2:1,进一步得到长AD与宽AB的比.

解答 解:连结EF,作IJ⊥LJ于J,
∵在矩形ABCD内放入六个小正方形后形成一个中心对称图形,
∴△HGF∽△FHE,△HGF≌△FML≌△LJI,
∴HG:GF=FH:HE=1:2,
∴长AD与宽AB的比为(1+2+1+2):(2+2+1)=6:5.
故选:A.

点评 此题考查了中心对称图形,相似三角形的性质,关键是理解直角三角形两直角边的比是2:1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网