题目内容

10.请观察下列式子,按要求完成下列题目.
$\frac{1}{{\sqrt{2}+1}}=\frac{{\sqrt{2}-1}}{{(\sqrt{2}+1)(\sqrt{2}-1)}}=\sqrt{2}-1$;$\frac{1}{{\sqrt{3}+\sqrt{2}}}=\frac{{\sqrt{3}-\sqrt{2}}}{{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}}=\sqrt{3}-\sqrt{2}$;$\frac{1}{{2+\sqrt{3}}}=\frac{{2-\sqrt{3}}}{{(2+\sqrt{3})(2-\sqrt{3})}}=2-\sqrt{3}$;$\frac{1}{{\sqrt{5}+2}}=\frac{{\sqrt{5}-2}}{{(\sqrt{5}+2)(\sqrt{5}-2)}}=\sqrt{5}-2$.
试求:
(1)$\frac{1}{{\sqrt{7}+\sqrt{6}}}$的值;
(2)$\frac{1}{{\sqrt{n+1}+\sqrt{n}}}$(n为正整数)的值;
(3)根据上面的规律,试化简下列式子.$\frac{1}{{\sqrt{2}+1}}$+$\frac{1}{{\sqrt{3}+\sqrt{2}}}$+$\frac{1}{{2+\sqrt{3}}}$+…+$\frac{1}{{\sqrt{2011}+\sqrt{2010}}}$.

分析 (1)分子、分母上下同乘$\sqrt{7}-\sqrt{6}$,即可解答;
(2)分子、分母上下同乘$\sqrt{n+1}-\sqrt{n}$,即可解答;
(3)利用(2)的规律,即可解答.

解答 解:(1)$\frac{1}{\sqrt{7}+\sqrt{6}}=\frac{\sqrt{7}-\sqrt{6}}{(\sqrt{7}+\sqrt{6})(\sqrt{7}-\sqrt{6})}=\sqrt{7}-\sqrt{6}$.
(2)$\frac{1}{{\sqrt{n+1}+\sqrt{n}}}$=$\frac{\sqrt{n+1}-\sqrt{n}}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}$=$\sqrt{n+1}-\sqrt{n}$.
(3)$\frac{1}{{\sqrt{2}+1}}$+$\frac{1}{{\sqrt{3}+\sqrt{2}}}$+$\frac{1}{{2+\sqrt{3}}}$+…+$\frac{1}{\sqrt{2011}+\sqrt{2010}}$
=$\sqrt{2}-1+\sqrt{3}-\sqrt{2}+2-\sqrt{3}+…+\sqrt{2011}$-$\sqrt{2010}$
=-1$+\sqrt{2011}$.

点评 本题考查分母有理化,解决本题的关键是根据分母有理化,发现规律.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网