题目内容
11.用加减消元法解下列方程组:(1)$\left\{\begin{array}{l}{4x-3y=14}\\{5x+3y=31}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x-5y=-21}\\{4x+3y=23}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{4x+7y=-19}\\{4x-5y=17}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{3(x-1)=y+5}\\{5(y-1)=3(x+5)}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组利用加减消元法求出解即可;
(4)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{4x-3y=14①}\\{5x+3y=31②}\end{array}\right.$,
①+②得:9x=45,即x=5,
把x=5代入①得:y=2,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=2}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x-5y=-21①}\\{4x+3y=23②}\end{array}\right.$,
②-①×2得:13y=65,即y=5,
把y=5代入②得:x=2,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{4x+7y=-19①}\\{4x-5y=17②}\end{array}\right.$,
①-②得:12y=-36,即y=-3,
把y=-3代入①得:x=$\frac{1}{2}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=-3}\end{array}\right.$;
(4)方程组整理得:$\left\{\begin{array}{l}{3x-y=8①}\\{3x-5y=-20②}\end{array}\right.$,
①-②得:4y=28,即y=7,
把y=7代入①得:x=5,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=7}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.