ÌâÄ¿ÄÚÈÝ

8£®Èçͼ1£¬Ö±Ïßl£ºy=-kx+kb£¨k£¾0£¬b£¾0£©£¬Óëx£¬yÖá·Ö±ðÏཻÓÚA¡¢BÁ½µã£¬½«¡÷AOBÈÆµãOÄæÊ±ÕëÐýת90¡ãµÃµ½¡÷COD£¬¹ýµãA¡¢B¡¢DµÄÅ×ÎïÏßP½Ð×ölµÄ¹ØÁªÅ×ÎïÏߣ¬¶øl½Ð×öPµÄ¹ØÁªÖ±Ïߣ®

£¨1£©Ì½¾¿Óë²ÂÏ룺
¢Ù̽¾¿£ºÈôP£ºy=-x2-3x+4£¬Ôòl±íʾµÄº¯Êý½âÎöʽΪy=-2x+2£¬Èôl£ºy=-2x+2£¬ÔòP±íʾµÄº¯Êý½âÎöʽΪy=-x2-x+2£»
¢Ú²ÂÏ룺Èôb=1ʱ£¬Ö±Ïßl£ºy=-kx+kµÄ¹ØÁªÅ×ÎïÏßµÄÅ×ÎïÏß½âÎöʽΪy=-x2-£¨k-1£©x+k£¬²¢ÑéÖ¤ÄãµÄ²ÂÏ룻
£¨2£©Èçͼ2£¬Èôk=2£¬b=2£¬Ö±ÏßMN£ºy=mx+nÓëÖ±ÏßlµÄ¹ØÁªÅ×ÎïÏßPÅ×ÎïÏßÏཻÓÚM¡¢NÁ½µã£¬¡ÏMBN=90¡ã£¬Ö±ÏßMN±Ø¾­¹ýÒ»¸ö¶¨µãQ£¬ÇëÇ󶨵ãQ×ø±ê£®

·ÖÎö £¨1£©¢Ù¸ù¾ÝÌâÒ⣬ÓÉy=-x2-3x+4Çó³öA¡¢B×ø±ê¼´¿ÉÇó³öÖ±ÏßAB½âÎöʽ£»ÓÉy=-2x+2£¬Çó³öA¡¢B¡¢D×ø±ê¼´¿ÉÇó³öÅ×ÎïÏß½âÎöʽ£®
¢ÚÓɢٵóö²ÂÏ룮Çó³öA¡¢B¡¢D×ø±ê¼´¿ÉÇó³öÅ×ÎïÏß½âÎöʽ£®
£¨2£©¹ýµãB×÷xÖáµÄƽÐÐÏßPQ£¬×÷MP¡ÍPQÓÚP£¬×÷NQ¡ÍPQÓÚN£¬ÓÉRt¡÷BNQ¡×Rt¡÷MBP£¬µÃ$\frac{MP}{BQ}$=$\frac{BP}{NQ}$£¬¼´$\frac{4-{y}_{1}}{-{x}_{2}}$=$\frac{{x}_{1}}{4-{y}_{2}}$£¬ÕûÀíµÃx1x2+16-4£¨y1+y2£©+y1y2=0£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=mx+n}\\{y=-\frac{1}{2}{x}^{2}-x+4}\end{array}\right.$£¬ÕûÀíµÃx2+£¨2m+2£©x+2n-8=0£¬ÀûÓøùÓëϵÊý¹ØÏµ£¬×ª»¯Îª¹ØÓÚm£¬nµÄ·½³Ì¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©¢Ù¡ßÅ×ÎïÏßP£ºy=-x2-3x+4£¬
¡àA£¨1£¬0£©£¬D£¨-4£¬0£©£¬B£¨0£¬4£©£¬
ÉèÖ±ÏßAB½âÎöʽΪy=kx+b£¬Ôò$\left\{\begin{array}{l}{b=4}\\{k+b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-4}\\{b=4}\end{array}\right.$
¡àPµÄ¹ØÁªÖ±ÏßΪy=-4x+4£¬
¡ßl£ºy=-2x+2£¬
¡àB£¨0£¬2£©£¬A£¨1£¬0£©£¬D£¨-2£¬0£©£¬
ÉèÅ×ÎïÏßP£ºy=ax2+bx+c£¬ÔòÓÐ$\left\{\begin{array}{l}{c=2}\\{a+b+c=0}\\{4a-2b+c=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-1}\\{b=-1}\\{c=2}\end{array}\right.$
¡à¹ØÁªÅ×ÎïÏßPΪ£ºy=-x2-x+2
¹Ê´ð°¸Îªy=-2x+2£¬y=-x2-x+2£®

¢Ú²ÂÏ룺y=-x2-£¨k-1£©x+k£®
ÀíÓÉ£º¡ßl£ºy=-kx+k£¬
¡àB£¨0£¬k£©£¬A£¨1£¬0£©£¬D£¨-k£¬0£©£¬
ÉèÅ×ÎïÏßP£ºy=ax2+bx+c£¬ÔòÓÐ$\left\{\begin{array}{l}{c=k}\\{a+b+c=0}\\{-a{k}^{2}-bk+c=0}\end{array}\right.$
½âµÃ$\left\{\begin{array}{l}{a=-1}\\{b=-£¨k-1£©}\\{c=k}\end{array}\right.$£¬
¡àÅ×ÎïÏßp£ºy=-x2-£¨k-1£©x+k£®
¹Ê´ð°¸Îªy=-x2-£¨k-1£©x+k£®

£¨3£©Ö±ÏßlµÄ½âÎöʽΪy=-2x+4£¬
¡àA£¨2£¬0£©¡¢B£¨0£¬4£©¡¢D£¨-4£¬0£©£¬
¡à¿ÉµÃÅ×ÎïÏßPµÄ½âÎöʽΪy=-$\frac{1}{2}$x2-x+4£¬
ÉèM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£¬
¹ýµãB×÷xÖáµÄƽÐÐÏßPQ£¬×÷MP¡ÍPQÓÚP£¬×÷NQ¡ÍPQÓÚN£¬
¡àRt¡÷BNQ¡×Rt¡÷MBP£¬
¡à$\frac{MP}{BQ}$=$\frac{BP}{NQ}$£¬
¼´$\frac{4-{y}_{1}}{-{x}_{2}}$=$\frac{{x}_{1}}{4-{y}_{2}}$£¬ÕûÀíµÃx1x2+16-4£¨y1+y2£©+y1y2=0£¬
¡ßy1+y2=m£¨x1+x2£©+2n£¬y1y2=£¨mx1+n£©£¨mx2+n£©=m2x1x2+mn£¨x1+x2£©+n2£¬
¡à£¨m2+1£©x1x2+£¨mn-4m£©£¨x1+x2£©+n2-8n+16=0£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=mx+n}\\{y=-\frac{1}{2}{x}^{2}-x+4}\end{array}\right.$£¬ÕûÀíµÃx2+£¨2m+2£©x+2n-8=0£¬
¡àx1+x2=-2m-2£¬x1x2=2n-8£¬
¡àn2-6n+8m-2mn+8=0£¬
¡à£¨n-4£©£¨n-2m-2£©=0£¬
µ±n=4ʱ£¬Ö±ÏßMN¾­¹ýµãB£¬ÎÞ·¨µÃµ½¡ÏMBN=90¡ã£¬
¡àn=2m+2£¬
¡àÖ±ÏßMNµÄ½âÎöʽΪy=mx+2m+2£¬
±Ø¹ý¶¨µã£¨-2£¬2£©£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯Êý¡¢¸ùÓëϵÊý¹ØÏµ¡¢½âÌâµÄ¹Ø¼üÊÇÁé»îÓ¦Óôý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽ£¬Ñ§»áÌí¼Ó¸¨ÖúÏß¹¹ÔìÏàËÆÈý½ÇÐΣ¬Ñ§»áÀûÓòÎÊý½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø