题目内容

如图,在平面直角坐标系中,抛物线试纸y=ax2+bx+c与x轴交于点A,C,与y轴交于点B.已知点A坐标为(8,0),点B为(0,8),点D为(0,3),tan∠DCO=,直线AB和直线CD相交于点E.

⑴ 求抛物线的解析式,并化成y=a(x-m)2+h的形式;

⑵ 设抛物线的顶点为G,请在直线AB上方的抛物线上求点P的坐标,使得S△ABP=S△ABG.

⑶ 点M为直线AB上的一点,过点M作x轴的平行线分别交直线AB,CD于点M,N,连结DM,DN,是否存在点M,使得△DMN为等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

(1);(2)M(20,-12)或M(, ), M(-, ) 【解析】试题分析:(1)在Rt△DOC中,由正切可得点C坐标,设抛物线的解析式为,把点B坐标代入,得a的值,即可得抛物线解析式,再化为顶点式即可; (2)设出P坐标,过点P作PF∥y轴交直线AB于F,由AB点坐标可得出直线AB的解析式, 由此得PF ,过点G作GH∥y轴交直线AB于H,得GH=3,由PF= GH=3,解...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网