ÌâÄ¿ÄÚÈÝ
16£®ÔĶÁÏÂÁвÄÁÏ£ºÍ¨¹ýСѧµÄѧϰÎÒÃÇÖªµÀ£¬·ÖÊý¿É·ÖΪ¡°Õæ·ÖÊý¡±ºÍ¡°¼Ù·ÖÊý¡±£¬¶ø¼Ù·ÖÊý¶¼¿É»¯Îª´ø·ÖÊý£¬È磺$\frac{8}{3}$=$\frac{6+2}{3}$=2+$\frac{2}{3}$=2$\frac{2}{3}$
ÎÒÃǶ¨Ò壺ÔÚ·ÖʽÖУ¬¶ÔÓÚÖ»º¬ÓÐÒ»¸ö×ÖĸµÄ·Öʽ£¬µ±·Ö×ӵĴÎÊý´óÓÚ»òµÈÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆÖ®Îª¡°¼Ù·Öʽ¡±£»µ±·Ö×ӵĴÎÊýСÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆÖ®Îª¡°Õæ·Öʽ¡±£®
Èç$\frac{x-1}{x+1}$£¬$\frac{{x}^{2}}{x-1}$ÕâÑùµÄ·Öʽ¾ÍÊǼٷÖʽ£»ÔÙÈ磺$\frac{3}{x+1}$£¬$\frac{2x}{{x}^{2}+1}$ÕâÑùµÄ·Öʽ¾ÍÊÇÕæ·Öʽ£®ÀàËÆµÄ£¬¼Ù·ÖʽҲ¿ÉÒÔ»¯Îª´ø·Öʽ£¨¼´£ºÕûʽÓëÕæ·ÖʽµÄºÍµÄÐÎʽ£©£®
È磺$\frac{x-1}{x+1}=\frac{£¨x+1£©-2}{x+1}=1-\frac{2}{x+1}$£»
ÔÙÈ磺$\frac{{x}^{2}}{x-1}=\frac{{x}^{2}-1+1}{x-1}=\frac{£¨x+1£©£¨x-1£©+1}{x-1}$=x+1+$\frac{1}{x-1}$
½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©·Öʽ$\frac{2}{x}$ÊÇÕæ·Öʽ£¨Ìî¡°Õæ¡±»ò¡°¼Ù¡±£©£»
£¨2£©½«¼Ù·Öʽ$\frac{x-1}{x+2}$»¯Îª´ø·ÖʽµÄÐÎʽΪ1-$\frac{3}{x+2}$£»
£¨3£©°Ñ·Öʽ$\frac{2x-1}{x+1}$»¯Îª´ø·Öʽ£»Èç¹û$\frac{2x-1}{x+1}$µÄֵΪÕûÊý£¬ÇóxµÄÕûÊýÖµ£®
·ÖÎö £¨1£©¸ù¾ÝÕæ·ÖʽµÄ¶¨Òå¼´¿ÉÅжϣ»
£¨2£©¸ù¾ÝÀýÌâ°Ñ·ÖʽµÄ·Ö×Ó»¯³Éx+2µÄÐÎʽ£¬È»ºóÄæÓÃͬ·ÖĸµÄ·ÖʽµÄ¼Ó·¨·¨ÔòÇó½â£»
£¨3£©·Öʽ$\frac{2x-1}{x+1}$»¯Îª´ø·Öʽ£¬°Ñ·Ö×Ó»¯³É2£¨x+1£©-3µÄÐÎʽ£¬È»ºóÄæÓÃͬ·ÖĸµÄ·ÖʽµÄ¼Ó·¨·¨Ôò»¯³É´ø·Öʽ£»
$\frac{2x-1}{x+1}$µÄֵΪÕûÊý£¬Ôò$\frac{3}{x+1}$µÄÖµÒ»¶¨ÊÇÕûÊý£¬Ôòx+1Ò»¶¨ÊÇ3µÄÔ¼Êý£¬´Ó¶øÇóµÃxµÄÖµ£®
½â´ð ½â£º£¨1£©$\frac{2}{x}$ÊÇÕæ·Öʽ£¬¹Ê´ð°¸ÊÇ£ºÕ棻
£¨2£©$\frac{x-1}{x+2}$=$\frac{x+2-3}{x+2}$=1-$\frac{3}{x+2}$£®
¹Ê´ð°¸ÊÇ£º1-$\frac{3}{x+2}$£»
£¨3£©$\frac{2x-1}{x+1}$=$\frac{2x+2-3}{x+1}$=$\frac{2£¨x+1£©-3}{x+1}$=2-$\frac{3}{x+1}$£»
¡ß$\frac{2x-1}{x+1}$µÄֵΪÕûÊý£¬ÇÒxΪÕûÊý£»
¡àx+1Ϊ3µÄÔ¼Êý£¬
¡àx+1µÄֵΪ1»ò-1»ò3»ò-3£»
¡àxµÄֵΪ0»ò-2»ò2»ò-4£®
µãÆÀ ±¾Ì⿼²éÁË·ÖʽµÄ»ìºÏÔËË㣬ÕýÈ·¶Ô·ÖʽµÄ·Öĸ½øÐбäÐΣ¬ÄæÓÃͬ·ÖĸµÄ·ÖʽµÄ¼Ó·¨·¨ÔòÊǹؼü£®
| A£® | Ò»Ö±Ôö´ó | B£® | Ò»Ö±¼õС | C£® | ÏÈÔö´óºó¼õС | D£® | ÏȼõСºóÔö´ó |