ÌâÄ¿ÄÚÈÝ
6£®£¨1£©Çó´Ëº¯ÊýµÄ¹ØÏµÊ½£»
£¨2£©×÷µãC¹ØÓÚxÖáµÄ¶Ô³ÆµãD£¬Ë³´ÎÁ¬½ÓA£¬C£¬B£¬D£®ÈôÔÚÅ×ÎïÏßÉÏ´æÔÚµãE£¬Ê¹Ö±ÏßPE½«ËıßÐÎABCD·Ö³ÉÃæ»ýÏàµÈµÄÁ½¸öËıßÐΣ¬ÇóµãEµÄ×ø±ê£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Ö±ÏßPE´óÓÚ¶þ´Îº¯Êýy=x2+bx+cµÄÖµ£¬xµÄȡֵ·¶Î§£»
£¨4£©FΪÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬¼Ç¡÷ABFµÄÃæ»ýΪS£¬µ±S=16£¬Çó³öÏàÓ¦µÄFµãµÄ×ø±ê£®
·ÖÎö £¨1£©Ö±½ÓÀûÓö¥µãʽÇó³ö¶þ´Îº¯Êý½âÎöʽ¼´¿É£»
£¨2£©ÀûÓÃÁâÐεÄÐÔÖʵóöÖ±ÏßPE±Ø¹ýÁâÐÎACBDµÄ¶Ô³ÆÖÐÐÄM£¬½ø¶øÇó³öÖ±ÏßPEµÄ½âÎöʽ£¬ÔÙÀûÓÃÁªÁ¢·½³Ì×éÇó³ö´ð°¸£»
£¨3£©ÀûÓã¨2£©ÖÐËùÇó½áºÏº¯ÊýͼÏóµÃ³ö´ð°¸£»
£¨4£©ÀûÓÃÒÑÖªµÃ³öFµã×Ý×ø±ê£¬½ø¶øÇó³öFµã×ø±ê£®
½â´ð ½â£º£¨1£©¡ß¶þ´Îº¯Êýy=x2+bx+cµÄ¶¥µãΪC£¨3£¬-16£©£¬
¡à¶þ´Îº¯Êý½âÎöʽΪ£ºy=£¨x-3£©2-16=x2-6x-7£»
£¨2£©Èçͼ1£¬ÉèÖ±ÏßPE¶ÔÓ¦µÄº¯Êý¹ØÏµÊ½Îª£ºy=kx+b£¬ÓÉÌâÒâ¿ÉµÃ£¬ËıßÐÎACBDÊÇÁâÐΣ¬
¹ýÖ±ÏßPE±Ø¹ýÁâÐÎACBDµÄ¶Ô³ÆÖÐÐÄM£¬
½«P£¨0£¬-7£©£¬M£¨3£¬0£©£¬´úÈëy=kx+bµÃ£º
$\left\{\begin{array}{l}{b=-7}\\{3k+b=\frac{7}{3}}\end{array}\right.$£¬![]()
½âµÃ£º$\left\{\begin{array}{l}{k=\frac{7}{3}}\\{b=-7}\end{array}\right.$£¬
¹ÊÖ±ÏßPEµÄ½âÎöʽΪ£ºy=$\frac{7}{3}$x-7£¬
´Ó¶øÁªÁ¢·½³Ì×飺$\left\{\begin{array}{l}{y=\frac{7}{3}x-7}\\{y={x}^{2}-6x-7}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=\frac{25}{3}}\\{y=\frac{112}{9}}\end{array}\right.$£¬
¸ù¾ÝÌâÒâ¿ÉµÃ£ºµãE£¨$\frac{25}{3}$£¬$\frac{112}{9}$£©£»
£¨3£©¹Û²ìͼÏóµÃ£º0£¼x£¼$\frac{25}{3}$ʱֱÏßPE´óÓÚ¶þ´Îº¯Êýy=x2+bx+cµÄÖµ£»![]()
£¨4£©Èçͼ2£¬¼ÙÉè´æÔÚÕâÑùµÄµãF£¬¿ÉÉèF£¨x£¬y£©£¬¹ýµãF×÷FG¡ÍxÖᣬ´¹×ãΪµãG£¬¸ù¾ÝÌâÒâAB=8£¬
¹ÊS=$\frac{1}{2}$¡Á|y|¡Á8=16£¬
½âµÃ£ºy=¡À4£¬
µ±y=4ʱ£¬x2-6x-7=4£¬
½âµÃ£ºx=3¡À2$\sqrt{5}$£¬
µ±y=-4ʱ£¬x2-6x-7=-4£¬
½âµÃ£ºx=3¡À2$\sqrt{3}$£»
¡àF1£¨3+2$\sqrt{5}$£¬4£©£¬F2£¨3-2$\sqrt{5}$£¬4£©£¬F3£¨3+2$\sqrt{3}$£¬-4£©£¬F4£¨3-2$\sqrt{3}$£¬-4£©£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶¥µãʽÇó¶þ´Îº¯Êý½âÎöʽÒÔ¼°º¯Êý½»µãÇ󷨺ÍÒ»Ôª¶þ´Î·½³ÌµÄ½â·¨µÈ֪ʶ£¬×¢ÒâÊýÐνáºÏµÄÓ¦Ó㬸ù¾ÝÌâÒâµÃ³öFµã×Ý×ø±êÊǽâÌâ¹Ø¼ü£®
| A£® | ±äС | B£® | ²»±ä | C£® | ±ä´ó | D£® | ÎÞ·¨È·¶¨ |
| A£® | 8$\sqrt{3}$ | B£® | 6 | C£® | 4$\sqrt{3}$ | D£® | 8 |