题目内容

3.已知M是菱形ABCD的对角线AC上一动点,连接BM并延长,交AD于点E,已知AB=5,AC=8,则当AM的长为4或$\frac{7}{4}$时,△BMC是直角三角形.

分析 首先连接BD,交AC于点O,由菱形ABCD中,AB=5,AC=8,易求得BC=5,OA=OC=4,且BD⊥AC;然后分别从BM⊥AC与BM⊥BC去分析求解即可求得答案.

解答 解:连接BD,交AC于点O,
∵菱形ABCD中,AB=5,AC=8,
∴BC=AC=5,OA=OC=$\frac{1}{2}$AC=4,AC⊥BD;
当BM⊥AC时,点M与点O重合,此时AM=OA=4;
当BM⊥BC时,∠CBM=∠COB,∠BCM=∠OCB,
∴△CBM∽△COB,
∴$\frac{BC}{OC}=\frac{CM}{CB}$,
即$\frac{5}{4}=\frac{CM}{5}$,
∴CM=$\frac{25}{4}$,
∴AM=AC-CM=$\frac{7}{4}$;
综上:AM=4或$\frac{7}{4}$.
故答案为:4或$\frac{7}{4}$.

点评 此题考查了菱形的性质、相似三角形的判定与性质以及直角三角形的性质.注意准确作出辅助线,利用分类讨论思想求解是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网