题目内容

17.如图,四边形ABCD是一片水田,某村民小组需计算其面积,测得如下数据:
∠A=90°,∠ABD=60°,∠CBD=54°,AB=200m,BC=300m.
请你计算出这片水田的面积.
(参考数据:sin54°≈0.809,cos54°≈0.588,tan54°≈1.376,$\sqrt{3}$≈1.732)

分析 作CM⊥BD于M,由含30°角的直角三角形的性质求出BD,由勾股定理求出AD,求出△ABD的面积,再由三角函数求出CM,求出△BCD的面积,然后根据S四边形ABCD=S△ABD+S△BCD列式计算即可得解.

解答 解:作CM⊥BD于M,如图所示:
∵∠A=90°,∠ABD=60°,
∴∠ADB=30°,
∴BD=2AB=400m,
∴AD=$\sqrt{3}$AB=200$\sqrt{3}$m,
∴△ABD的面积=$\frac{1}{2}$×200×200$\sqrt{3}$=20000$\sqrt{3}$(m2),
∵∠CMB=90°,∠CBD=54°,
∴CM=BC•sin54°=300×0.809=242.7m,
∴△BCD的面积=$\frac{1}{2}$×400×242.7=48540(m2),
∴这片水田的面积=20000$\sqrt{3}$+48540≈83180(m2).

点评 本题考查了勾股定理,由含30°角的直角三角形的性质,三角函数的运用;熟练掌握勾股定理,由三角函数求出CM是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网