ÌâÄ¿ÄÚÈÝ
7£®kȡʲôֵʱ£¬¹ØÓÚxµÄ·½³Ì4x2-£¨k+2£©x+k-1=0ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¿Çó³öÕâʱ·½³ÌµÄ¸ù£®·ÖÎö ÓÉ·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù½áºÏ¸ùµÄÅбðʽ£¬¼´¿ÉµÃ³ö¹ØÓÚkµÄÒ»Ôª¶þ´Î·½³Ì£¬½âÖ®¼´¿ÉµÃ³ökÖµ£¬½«kÖµ´úÈëÔ·½³ÌÖУ¬½âÖ®¼´¿ÉµÃ³ö·½³ÌµÄ¸ù£®
½â´ð ½â£º¡ß¹ØÓÚxµÄ·½³Ì4x2-£¨k+2£©x+k-1=0ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬
¡à¡÷=[-£¨k+2£©]2-4¡Á4£¨k-1£©=k2-12k+20=£¨k-2£©£¨k-10£©=0£¬
½âµÃ£ºk1=2£¬k2=10£®
µ±k=2ʱ£¬Ô·½³ÌΪ4x2-4x+1=0£¬
½âµÃ£ºx1=x2=$\frac{1}{2}$£»
µ±k=10ʱ£¬Ô·½³ÌΪ4x2-12x+9=0£¬
½âµÃ£ºx1=x2=$\frac{3}{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˸ùµÄÅбðʽÒÔ¼°Òòʽ·Ö½â·¨½âÒ»Ôª¶þ´Î·½³Ì£¬Àμǡ°µ±¡÷=0ʱ£¬·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù¡±ÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿