题目内容

20.如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=104°,则∠DFC的度数为(  )
A.104°B.118°C.128°D.136°

分析 先根据等腰三角形的性质得出∠B=∠DCB,∠E=∠CDE,再利用三角形的内角和进行分析解答即可.

解答 解:∵BD=CD=CE,
∴∠B=∠DCB,∠E=∠CDE,
∵∠ADC+∠ACD=114°,
∴∠BDC+∠ECD=360°-104°=256°,
∴∠B+∠DCB+∠E+∠CDE=360°-256°=104°,
∴∠DCB+∠CDE=52°,
∴∠DFC=180°-52°=128°,
故选C.

点评 此题考查等腰三角形的性质,四边形的内角和,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网