ÌâÄ¿ÄÚÈÝ

2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªµÚÒ»ÏóÏÞÄڵĵãAµÄ×ø±êΪ£¨1£¬m£©£¬OA=2£¬Õý±ÈÀýº¯Êýy=$\frac{3x}{m}$ºÍ·´±ÈÀýº¯Êýy=$\frac{k-1}{x}$µÄͼÏó¶¼¾­¹ýµãA£¬¹ýA×÷OAµÄ´¹Ïß½»xÖáÓÚµãB£®
£¨1£©ÇómºÍkµÄÖµ£»
£¨2£©ÇóµãBµÄ×ø±ê£»
£¨3£©ÔÚ×ø±êÆ½ÃæÄÚ£¬È¡MΪÏß¶ÎABµÄÖе㣮ÒÔABΪµ×±ßÔÚ¡÷ABOµÄÍⲿ×÷µÈÑüÈý½ÇÐÎABC£¬ÎÊÖ±ÏßMCÓë±ßOAÓкÎÖÖλÖùØÏµ£¿Ö¤Ã÷ÄãµÄ½áÂÛ£®

·ÖÎö £¨1£©ÀûÓôý¶¨ÏµÊý·¨½«Aµã´úÈëÕý±ÈÀýº¯Êý½âÎöʽ½ø¶øµÃ³ömµÄÖµ£¬¼´¿ÉµÃ³öAµã×ø±ê£¬ÔÙ½«Aµã´úÈë·´±ÈÀýº¯Êý½âÎöʽ¼´¿ÉµÃ³ökµÄÖµ£»
£¨2£©ÀûÓÃÒÑÖªÊ×ÏÈÇó³öAOµÄ½âÎöʽ£¬½ø¶ø¼ÙÉè³öABµÄ½âÎöʽÇó³öͼÏóÓëxÖá½»µã¼´¿É£»
£¨3£©ÀûÓõÈÑüÈý½ÇÐεÄÐÔÖʽáºÏ´¹ÏßµÄÐÔÖʵóö´ð°¸£®

½â´ð ½â£º£¨1£©¡ßµÚÒ»ÏóÏÞÄڵĵãAµÄ×ø±êΪ£¨1£¬m£©£¬ÔÚÕý±ÈÀýº¯Êýy=$\frac{3x}{m}$µÄͼÏóÉÏ£¬
¡àm=$\frac{3¡Á1}{m}$£¬
½âµÃ£ºm=¡À$\sqrt{3}$£¬
¡ßÕý±ÈÀýº¯Êý¾­¹ýµÚÒ»¡¢ÈýÏóÏÞ£¬
¡àm=$\sqrt{3}$£¬
ÔòA£¨1£¬$\sqrt{3}$£©£¬´úÈëy=$\frac{k-1}{x}$µÃk-1=$\sqrt{3}$£¬
¹Êk=$\sqrt{3}$+1£»

£¨2£©¡ßm=$\sqrt{3}$£¬
¡àÖ±ÏßOAµÄ½âÎöʽΪ£ºy=$\sqrt{3}$x£¬
¡ß¹ýA×÷OAµÄ´¹Ïß½»xÖáÓÚµãB£¬
¡àÖ±ÏßABµÄ½âÎöʽΪ£ºy=-$\frac{\sqrt{3}}{3}$x+b£¬
½«Aµã´úÈëÖ±ÏßABµÄ½âÎöʽµÃ£¬$\sqrt{3}$=-$\frac{\sqrt{3}}{3}$+b
½âµÃ£ºb=$\frac{4\sqrt{3}}{3}$£¬
¹ÊÖ±ÏßABµÄ½âÎöʽΪ£ºy=-$\frac{\sqrt{3}}{3}$x+$\frac{4\sqrt{3}}{3}$£¬
µ±y=0£¬½âµÃ£ºx=4£¬
¹ÊB£¨$\frac{4\sqrt{3}}{3}$£¬0£©£»

£¨3£©CM¡ÎAO£¬
ÀíÓÉ£º¡ßMΪÏß¶ÎABµÄÖе㣮ÒÔABΪµ×±ßÔÚ¡÷ABOµÄÍⲿ×÷µÈÑüÈý½ÇÐÎABC£¬
¡àCM¡ÍAB£¬
ÓÖ¡ßOA¡ÍAB£¬
¡àCM¡ÎAO£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁË·´±ÈÀýº¯Êý×ÛºÏÒÔ¼°´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽÒÔ¼°µÈÑüÈý½ÇÐεÄÐÔÖʵÈ֪ʶ£¬ÕýÈ·Çó³öÖ±ÏßABµÄ½âÎöʽÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø