ÌâÄ¿ÄÚÈÝ
2£®£¨1£©ÇómºÍkµÄÖµ£»
£¨2£©ÇóµãBµÄ×ø±ê£»
£¨3£©ÔÚ×ø±êÆ½ÃæÄÚ£¬È¡MΪÏß¶ÎABµÄÖе㣮ÒÔABΪµ×±ßÔÚ¡÷ABOµÄÍⲿ×÷µÈÑüÈý½ÇÐÎABC£¬ÎÊÖ±ÏßMCÓë±ßOAÓкÎÖÖλÖùØÏµ£¿Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö £¨1£©ÀûÓôý¶¨ÏµÊý·¨½«Aµã´úÈëÕý±ÈÀýº¯Êý½âÎöʽ½ø¶øµÃ³ömµÄÖµ£¬¼´¿ÉµÃ³öAµã×ø±ê£¬ÔÙ½«Aµã´úÈë·´±ÈÀýº¯Êý½âÎöʽ¼´¿ÉµÃ³ökµÄÖµ£»
£¨2£©ÀûÓÃÒÑÖªÊ×ÏÈÇó³öAOµÄ½âÎöʽ£¬½ø¶ø¼ÙÉè³öABµÄ½âÎöʽÇó³öͼÏóÓëxÖá½»µã¼´¿É£»
£¨3£©ÀûÓõÈÑüÈý½ÇÐεÄÐÔÖʽáºÏ´¹ÏßµÄÐÔÖʵóö´ð°¸£®
½â´ð
½â£º£¨1£©¡ßµÚÒ»ÏóÏÞÄڵĵãAµÄ×ø±êΪ£¨1£¬m£©£¬ÔÚÕý±ÈÀýº¯Êýy=$\frac{3x}{m}$µÄͼÏóÉÏ£¬
¡àm=$\frac{3¡Á1}{m}$£¬
½âµÃ£ºm=¡À$\sqrt{3}$£¬
¡ßÕý±ÈÀýº¯Êý¾¹ýµÚÒ»¡¢ÈýÏóÏÞ£¬
¡àm=$\sqrt{3}$£¬
ÔòA£¨1£¬$\sqrt{3}$£©£¬´úÈëy=$\frac{k-1}{x}$µÃk-1=$\sqrt{3}$£¬
¹Êk=$\sqrt{3}$+1£»
£¨2£©¡ßm=$\sqrt{3}$£¬
¡àÖ±ÏßOAµÄ½âÎöʽΪ£ºy=$\sqrt{3}$x£¬
¡ß¹ýA×÷OAµÄ´¹Ïß½»xÖáÓÚµãB£¬
¡àÖ±ÏßABµÄ½âÎöʽΪ£ºy=-$\frac{\sqrt{3}}{3}$x+b£¬
½«Aµã´úÈëÖ±ÏßABµÄ½âÎöʽµÃ£¬$\sqrt{3}$=-$\frac{\sqrt{3}}{3}$+b
½âµÃ£ºb=$\frac{4\sqrt{3}}{3}$£¬
¹ÊÖ±ÏßABµÄ½âÎöʽΪ£ºy=-$\frac{\sqrt{3}}{3}$x+$\frac{4\sqrt{3}}{3}$£¬
µ±y=0£¬½âµÃ£ºx=4£¬
¹ÊB£¨$\frac{4\sqrt{3}}{3}$£¬0£©£»
£¨3£©CM¡ÎAO£¬
ÀíÓÉ£º¡ßMΪÏß¶ÎABµÄÖе㣮ÒÔABΪµ×±ßÔÚ¡÷ABOµÄÍⲿ×÷µÈÑüÈý½ÇÐÎABC£¬
¡àCM¡ÍAB£¬
ÓÖ¡ßOA¡ÍAB£¬
¡àCM¡ÎAO£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁË·´±ÈÀýº¯Êý×ÛºÏÒÔ¼°´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽÒÔ¼°µÈÑüÈý½ÇÐεÄÐÔÖʵÈ֪ʶ£¬ÕýÈ·Çó³öÖ±ÏßABµÄ½âÎöʽÊǽâÌâ¹Ø¼ü£®
| A£® | 3m | B£® | 2m | C£® | 4m | D£® | $\sqrt{3}$m |
| A£® | £¨0£¬0£© | B£® | £¨-1£¬0£© | C£® | £¨0£¬1£© | D£® | £¨0£¬-1£© |