题目内容
15.(1)求证:AC=CD;
(2)若AC=AE,求∠DEC的度数.
分析 (1)根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论;
(2)根据∠ACD=90°,AC=CD,得到∠2=∠D=45°,根据等腰三角形的性质得到∠4=∠6=67.5°,由平角的定义得到∠DEC=180°-∠6=112.5°.
解答
解:∵∠BCE=∠ACD=90°,
∴∠3+∠4=∠4+∠5,
∴∠3=∠5,
在△ACD中,∠ACD=90°,
∴∠2+∠D=90°,
∵∠BAE=∠1+∠2=90°,
∴∠1=∠D,
在△ABC和△DEC中,$\left\{\begin{array}{l}{∠1=∠D}\\{∠3=∠5}\\{BC=CE}\end{array}\right.$,
∴△ABC≌△DEC(AAS),
∴AC=CD;
(2)∵∠ACD=90°,AC=CD,
∴∠2=∠D=45°,
∵AE=AC,
∴∠4=∠6=67.5°,
∴∠DEC=180°-∠6=112.5°.
点评 本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.
练习册系列答案
相关题目
5.公交公司的某路公交车每月运营总支出的费用为4000元,乘客乘车的票价为2元/人次.设每月的乘客量为x(人次),每月的赢利额为y(元).(赢利额=总收入-总支出)
(1)y(元)与x(人次)之间的关系式为y=2x-4000;(x为正整数)
(2)根据关系式填表:
(3)根据表格数据,当月乘客量超过2000人次时,该路公交车运营才能赢利.
(1)y(元)与x(人次)之间的关系式为y=2x-4000;(x为正整数)
(2)根据关系式填表:
| x/人次 | 500 | 1000 | 1500 | 2000 | 2500 | 3000 |
| y/元 | -3000 | -2000 | -1000 | 0 | 1000 | 2000 |
3.
如图,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,则点C的坐标是( )
| A. | (2,7) | B. | (3,7) | C. | (3,8) | D. | (4,8) |
20.下列几何体中,同一个几何体的三视图完全相同的是( )
| A. | 球 | B. | 圆锥 | C. | 圆柱 | D. | 三棱柱 |