题目内容

9.如图,在四边形ABCD中,E,F分别是AB,AD的中点.若EF=2,BC=5,CD=3,则sinC等于(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{4}{5}$D.$\frac{3}{5}$

分析 如图,连接BD,由三角形中位线定理得到BD的长度,然后利用勾股定理的逆定理推知△BCD为直角三角形,最后由锐角三角函数的定义进行解答.

解答 解:连接BD,
∵E、F分别是AB、AD的中点,
∴EF∥BD,EF=$\frac{1}{2}$BD,
∵EF=2,
∴BD=4,
又∵BC=5,CD=3,
∴BD2+CD2=BC2
∴△BDC是直角三角形,
∴sinC=$\frac{BD}{BC}$=$\frac{4}{5}$,
故选:C.

点评 此题主要考查了锐角三角形的定义以及三角形中位线的性质以及勾股定理逆定理,根据已知得出△BDC是直角三角形是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网