ÌâÄ¿ÄÚÈÝ
4£®£¨1£©ÈôP£¨1£¬2£©£¬Q£¨4£¬2£©£®
¢ÙÔÚµãA£¨1£¬0£©£¬B£¨$\frac{5}{2}$£¬4£©£¬C£¨0£¬3£©ÖУ¬PQµÄ¡°µÈ¸ßµã¡±ÊÇA¡¢B£»
¢ÚÈôM£¨t£¬0£©ÎªPQµÄ¡°µÈ¸ßµã¡±£¬ÇóPQµÄ¡°µÈ¸ß¾àÀ롱µÄ×îСֵ¼°´ËʱtµÄÖµ£®
£¨2£©ÈôP£¨0£¬0£©£¬PQ=2£¬µ±PQµÄ¡°µÈ¸ßµã¡±ÔÚyÖáÕý°ëÖáÉÏÇÒ¡°µÈ¸ß¾àÀ롱×îСʱ£¬Ö±½Óд³öµãQµÄ×ø±ê£®
·ÖÎö £¨1£©¸ù¾Ý¡°µÈ¸ßµã¡±µÄ¸ÅÄî½â´ð¼´¿É£»
£¨2£©¢ÙÏÈÈ·¶¨³öµãP¹ØÓÚxÖáµÄ¶Ô³ÆµãP¡ä£¬ÔÙ¸ù¾Ý×î¶Ì·¾¶µÄÇ󷨼´¿ÉÈ·¶¨×îС¾àÀ룻¢ÚÏÈÖ¤Ã÷¡°µÈ¸ß¾àÀ롱×îСʱ¡÷MPQΪµÈÑüÈý½ÇÐΣ¬ÔÙÀûÓù´¹É¶¨ÀíÇó³öµãQ×ø±ê¼´¿É£®
½â´ð ½â£º£¨1£©¢Ù¡ßP£¨1£¬2£©£¬Q£¨4£¬2£©£¬
¡àÔÚµãA£¨1£¬0£©£¬B£¨$\frac{5}{2}$£¬4£©µ½PQµÄ¾àÀëΪ2£®
¡àPQµÄ¡°µÈ¸ßµã¡±ÊÇA¡¢B£¬
¹Ê´ð°¸Îª£ºA¡¢B£»
¢ÚÈçͼ1£¬×÷µãP¹ØÓÚxÖáµÄ¶Ô³ÆµãP¡ä£¬Á¬½ÓP¡äQ£¬P¡äQÓëxÖáµÄ½»µã¼´Îª¡°µÈ¸ßµã¡±M£¬´Ëʱ¡°µÈ¸ß¾àÀ롱×îС£¬×îСֵΪÏß¶ÎP¡äQµÄ³¤£®
¡ßP £¨1£¬2£©£¬
¡àP¡ä£¨1£¬-2£©£®![]()
ÉèÖ±ÏßP¡äQµÄ±í´ïʽΪy=kx+b£¬
¸ù¾ÝÌâÒ⣬ÓÐ$\left\{\begin{array}{l}{k+b=-2}\\{4k+b=2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=\frac{4}{3}}\\{b=-\frac{10}{3}}\end{array}\right.$£®
¡àÖ±ÏßP¡äQµÄ±í´ïʽΪ$y=\frac{4}{3}x-\frac{10}{3}$£®
µ±y=0ʱ£¬½âµÃ$x=\frac{5}{2}$£®
¼´$t=\frac{5}{2}$£®
¸ù¾ÝÌâÒ⣬¿ÉÖªPP¡ä=4£¬PQ=3£¬PQ¡ÍPP¡ä£¬
¡à$P'Q=\sqrt{PP{'^2}+P{Q^2}}=5$£®
¡à¡°µÈ¸ß¾àÀ롱×îСֵΪ5£®
£¨2£©Èçͼ2£¬¹ýPQµÄ¡°µÈ¸ßµã¡±M×÷MN¡ÍPQÓÚµãN£¬![]()
¡àPQ=2£¬MN=2£®
ÉèPN=x£¬ÔòNQ=2-x£¬
ÔÚRt¡÷MNPºÍRt¡÷MNQÖÐÓɹ´¹É¶¨ÀíµÃ£º
MP2=22+x2=4+x2£¬MQ2=22+£¨2-x£©2=x2-4x+8£¬
¡àMP2+MQ2=2x2-4x+12=2£¨x-1£©2+10£¬
¡ßMP2+MQ2¡Ü£¨MP+MQ£©2£¬
¡àµ±MP2+MQ2×îСʱMP+MQÒ²×îС£¬´Ëʱx=1£¬
¼´PN=NQ£¬
¡à¡÷MPQΪµÈÑüÈý½ÇÐΣ¬
¡àMP=MQ=$\sqrt{{2}^{2}+{1}^{2}}=\sqrt{5}$£¬
Èçͼ3£¬ÉèQ×ø±êΪ£¨x£¬y£©£¬¹ýµãQ×÷QE¡ÍyÖáÓÚµãE£¬![]()
ÔòÔÚRt¡÷MNPºÍRt¡÷MNQÖÐÓɹ´¹É¶¨ÀíµÃ£º
QE2=QP2-OE2=22-y2=4-y2£¬$Q{E}^{2}=Q{M}^{2}-M{E}^{2}=£¨\sqrt{5}£©^{2}-£¨\sqrt{5}-y£©^{2}$=$2\sqrt{5}y-{y}^{2}$£¬
¡à4-${y}^{2}=2\sqrt{5}y-{y}^{2}$£®
½âµÃy=$\frac{2\sqrt{5}}{5}$£®
$Q{E}^{2}=4-{y}^{2}=4-£¨\frac{2\sqrt{5}}{5}£©^{2}=\frac{16}{5}$£¬
µ±µãQÔÚµÚÒ»ÏóÏÞʱx=$\frac{4\sqrt{5}}{5}$£¬µ±µãQÔÚµÚ¶þÏóÏÞʱx=-$\frac{4\sqrt{5}}{5}$£¬
¡àQ£¨$\frac{{4\sqrt{5}}}{5}$£¬$\frac{{2\sqrt{5}}}{5}$£©»òQ£¨$-\frac{{4\sqrt{5}}}{5}$£¬$\frac{{2\sqrt{5}}}{5}$£©£®
µãÆÀ ±¾Ì⿼²éÁ˶Զ¨ÒåиÅÄîµÄÀí½âºÍ×î¶Ì·¾¶ÎÊÌ⣬ȷ¶¨³öP¹ØÓÚxÖáµÄ¶Ô³ÆµãP¡äµÄλÖÃÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
| A£® | $\frac{900}{m}=\frac{750}{m+3}$ | B£® | $\frac{900}{m+3}=\frac{750}{m}$ | C£® | $\frac{900}{m}=\frac{750}{m-3}$ | D£® | $\frac{900}{m-3}=\frac{750}{m}$ |
| A£® | £¨$\sqrt{2}$£¬$\sqrt{2}$£© | B£® | £¨$\sqrt{2}$£¬-$\sqrt{2}$£© | C£® | £¨-1£¬1£© | D£® | £¨1£¬-1£© |
| A£® | y1£¼y2£¼y3 | B£® | y2£¼y1£¼y3 | C£® | y3£¼y1£¼y2 | D£® | y3£¼y2£¼y1 |
| A£® | 4 | B£® | 4$\sqrt{2}$ | C£® | 2$\sqrt{6}$ | D£® | 3$\sqrt{3}$ |