题目内容
18.(1)求证:AD是半圆O的切线;
(2)连结CD,求证:∠A=2∠CDE.
分析 (1)连接OD,BD,根据圆周角定理得到∠ABO=90°,根据等腰三角形的性质得到∠ABD=∠ADB,∠DBO=∠BDO,根据等式的性质得到∠ADO=∠ABO=90°,根据切线的判定定理即可得到即可;
(2)由AD是半圆O的切线得到∠ODE=90°,于是得到∠ODC+∠CDE=90°,根据圆周角定理得到∠ODC+∠BDO=90°,等量代换得到∠DOC=2∠BDO,∠DOC=2∠CDE即可得到结论.
解答 解:(1)连结OD,BD,![]()
∵AB是⊙O的切线,
∴AB⊥BC,即∠ABC=90°,
∵AB=AD,
∴∠ABD=∠ADB,
∵OB=OD,
∴∠DBO=∠BDO,
∴∠ABD+∠DBO=∠ADB+∠BDO,
∴∠ADO=∠ABO=90°,
∴AD是半圆O的切线.
(2)由(1)知,∠ADO=∠ABO=90°,
∴∠A=360°-∠ADO-∠ABO-∠BOD=180°-∠BOD=∠DOC,
∵AD是半圆O的切线,
∴∠ODE=90°,
∴∠ODC+∠CDE=90°,
∵BC是⊙O的直径,
∴∠ODC+∠BDO=90°,
∴∠BDO=∠CDE,
∵∠BDO=∠OBD,
∴∠DOC=2∠BDO,
∴∠DOC=2∠CDE,
∴∠A=2∠CDE.
点评 本题考查了切线是性质,弧长的计算,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.
练习册系列答案
相关题目
1.
如图,△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,则以下结论正确的是( )
| A. | ∠FEC=45° | B. | BE=DE | C. | AB=BC | D. | AB=DF |
10.下列四组数,可作为直角三角形三边长的是( )
| A. | 5cm、12cm、13cm | B. | 1cm、2cm、3cm | C. | 2cm、3cm、4cm | D. | 4cm、5cm、6cm |
7.
数学李老师给学生出了这样一个问题:探究函数y=$\frac{x}{x+1}$图象与性质.小斌根据学习函数的经验,对函数y=$\frac{x}{x+1}$的图象与性质进行了探究.下面是小斌的探究过程,请补充完成:
(1)函数y=$\frac{x}{x+1}$的自变量x的取值范围是x≠-1;
(2)根据下表所列出y与x对应值,在平面直角坐标系中描出各对以对应值为坐标的点,并画出该函数的图象;
(3)若直线y=x+b与函数y=$\frac{x}{x+1}$的图象无交点,请直接写出b的取值范围.
(1)函数y=$\frac{x}{x+1}$的自变量x的取值范围是x≠-1;
(2)根据下表所列出y与x对应值,在平面直角坐标系中描出各对以对应值为坐标的点,并画出该函数的图象;
(3)若直线y=x+b与函数y=$\frac{x}{x+1}$的图象无交点,请直接写出b的取值范围.
| x | … | -5 | -4 | -3 | -2 | -$\frac{3}{2}$ | -$\frac{1}{2}$ | 0 | 1 | 2 | 3 | 4 | 5 | … |
| y | … | $\frac{5}{4}$ | $\frac{4}{3}$ | $\frac{3}{2}$ | 2 | 3 | -1 | 0 | $\frac{1}{2}$ | $\frac{2}{3}$ | $\frac{3}{4}$ | $\frac{4}{5}$ | $\frac{5}{6}$ | … |