题目内容

11.如图,⊙O的直径AB=2,P是上半圆(A、B除外)上任一点,∠APB的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是$\sqrt{3}$.

分析 由于PC平分∠APB,易得$\widehat{AC}$=$\widehat{BC}$,如果连接OC交EF于D,根据垂径定理可知:OC必垂直平分EF.进一步由M、N是AC、BC的中点,因此MN是△ABC的中位线,根据平行线分线段成比例定理可得:OD=CD=$\frac{1}{2}$OC=1.连接OE,可在Rt△OED中求出ED的长,即可得出EF的值.

解答 解:如图,

∵PC是∠APB的角平分线,
∴∠APC=∠CPB,
∴弧AC=弧BC;
∴AC=BC;
∵AB是直径,
∴∠ACB=90°.
即△ABC是等腰直角三角形.
连接OC,交EF于点D,则OC⊥AB;
∵M、N是AC、BC的中点,
∴MN∥AB;
∴OC⊥EF,OD=$\frac{1}{2}$OC=$\frac{1}{2}$.
连接OE,根据勾股定理,得:DE=$\frac{\sqrt{3}}{2}$,EF=2ED=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 此题考查圆周角定理,垂径定理,三角形的中位线,综合运用了圆周角定理及其推论发现等腰直角三角形,再进一步根据等腰三角形的性质以及中位线定理,求得EF的弦心距,最后结合垂径定理和勾股定理求得弦长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网