题目内容
14.(1)求证:△ABE≌△DFE;
(2)连接BD、AF,当BE平分∠ABD时,求证:四边形ABDF是菱形.
分析 (1)由平行四边形的性质和已知条件得出∠ABE=∠DFE,AE=DE,由AAS证明△ABE≌△DFE即可.
(2)由全等三角形的性质得出AB=DF,证出四边形ABDF是平行四边形,再由平行四边形的性质和已知条件得出∠DBF=∠DFB,得出DB=DF,即可得出结论.
解答 (1)证明:∵四边形ABCD为平行四边形,
∴AB∥CD.
∵点F在CD的延长线上,
∴FD∥AB.
∴∠ABE=∠DFE.
∵E是AD中点,
∴AE=DE.
在△ABE和△DFE中,$\left\{\begin{array}{l}{∠ABE=∠DFE}&{\;}\\{∠BEA=∠DEF}&{\;}\\{AE=DE}&{\;}\end{array}\right.$,
∴△ABE≌△DFE(AAS);
(2)证明:∵△ABE≌△DFE,
∴AB=DF.
∵AB∥DF,AB=DF,
∴四边形ABDF是平行四边形.
∵BF平分∠ABD,
∴∠ABF=∠DBF.
∵AB∥DF,
∴∠ABF=∠DFB,
∴∠DBF=∠DFB.
∴DB=DF.
∴四边形ABDF是菱形.
点评 此题考查了平行四边形的性质与判定、全等三角形的判定与性质.此题难度不大,证明三角形全等是解决问题的关键,注意掌握数形结合思想的应用.
练习册系列答案
相关题目