题目内容

10.如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上.将△ABC向下平移2个单位得到△A1B1C1,然后将△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1
(1)在网格中画出△A1B1C1和△A2B2C1
(2)计算线段AC在变换到A2C1的过程中扫过区域的面积(重叠部分不重复计算)

分析 (1)利用网格特点和平移的性质画出点A、B、C的对应点A1、B1、C1,则可得到△A1B1C1;然后利用网格特点和旋转的性质画出点A1、B1的对应点A2、B2,则可得到△A2B2C1
(2)线段AC在变换到A2C1的过程中扫过区域有平行四边形和扇形组成,于是根据平行四边形的面积公式和扇形面积公式可计算出线段AC在变换到A2C1的过程中扫过区域的面积.

解答 解:(1)如图,△A1B1C1和△A2B2C1为所作;

(2)线段AC在变换到A2C1的过程中扫过区域的面积(重叠部分不重复计算)=2×2+$\frac{90•π•(2\sqrt{2})^{2}}{360}$=4+2π.

点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网