题目内容

6.如图,在Rt△ABC中,两锐角的平分线AD,BE相交于点O,OF⊥AC于点F,OG⊥BC于点G,求证:四边形OGCF是正方形.

分析 根据有三个角是直角的四边形是矩形,可得四边形OGCF是矩形,根据角平分线的性质,可得OH与OF,OH与OG的关系,根据邻边相等的矩形是正方形,可得答案.

解答 证明:如图,作OH⊥AB与H点
∵OF⊥AC于点F,OG⊥BC于点G,
∴∠OGC=∠OFC=90°.
∵∠C=90°,
∴四边形OGCF是矩形.
∵AD平分∠BAC,
∴OH=OF.
∵BE平分∠ABC,
∴OH=OG,
∴OF=OG,
∴四边形OGCF是正方形.

点评 本题考查了正方形的判定,利用了矩形的判定,正方形的判定,利用角平分线的性质得出邻边相等是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网