题目内容

14.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD:S△ACD=(  )
A.3:4B.4:3C.16:9D.9:16

分析 利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.

解答 解:∵AD是△ABC的角平分线,
∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2
∴h1=h2
∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,
故选:B.

点评 本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网