题目内容

2.在△ABC中,AC=2$\sqrt{5}$,点D为直线AB上一点,且AB=3BD,直线CD与直线BC所成锐角的正切值为$\frac{1}{2}$,并且CD⊥AC,则BC的长为$\frac{5}{2}$或5.

分析 如图1中,当点D在AB的延长线上时,作BE⊥CD垂足为E,先求出BE,EC,在RT△BCE中利用勾股定理即可解决,如图2中,当点D在线段AB上时,作BE⊥CD于E,方法类似第一种情形.

解答 解:如图1中,当点D在AB的延长线上时,作BE⊥CD垂足为E,
∵AC⊥CD,
∴AC∥BE,
∴$\frac{BE}{AC}$=$\frac{DB}{DA}$=$\frac{1}{4}$,
∵$AC=2\sqrt{5}$,
∴BE=$\frac{1}{2}$$\sqrt{5}$,
∵tan$∠BCE=\frac{1}{2}$,
∴EC=2BE=$\sqrt{5}$,
∴BC=$\sqrt{C{E}^{2}+B{E}^{2}}$=$\sqrt{(\frac{1}{2}\sqrt{5})^{2}+(\sqrt{5})^{2}}$=$\frac{5}{2}$.
如图2中,当点D在线段AB上时,
作BE⊥CD于E,
∵AC∥BE,AC=2$\sqrt{5}$,
∴$\frac{BE}{AC}$=$\frac{BD}{AD}$=$\frac{1}{2}$,
∴BE=$\sqrt{5}$,
∵tan∠BCE=$\frac{1}{2}$,
∴EC=2BE=2$\sqrt{5}$,
∴BC=$\sqrt{C{E}^{2}+B{E}^{2}}$=5.
故答案为$\frac{5}{2}$或5.

点评 本题考查平行线的性质、锐角三角函数、勾股定理等知识,解题的关键是添加辅助线,利用平行线的性质解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网