题目内容

5.已知:如图,在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=16,BC=18.连接BD,AE⊥BD,垂足为点E.
(1)求证:△ABE∽△DBC;
(2)求线段BE的长.

分析 (1)由等腰三角形的性质可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,即可得出结论;
(2)由等腰三角形的性质可知,BD=2BE,根据△ABE∽△DBC,利用相似比求BE即可.

解答 (1)证明:∵AB=AD=16,
∴∠ABD=∠ADB,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠DBC,
∵AE⊥BD,
∴∠AEB=∠C=90°,
∴△ABE∽△DBC;
(2)解:∵AB=AD,又AE⊥BD,
∴BE=DE,
∴BD=2BE,
由△ABE∽△DBC,
得$\frac{AB}{BD}=\frac{BE}{BC}$,
∵AB=AD=16,BC=18,
∴$\frac{16}{2BE}=\frac{BE}{18}$,
解得:BE=12.

点评 本题考查了相似三角形的判定与性质、等腰三角形的性质;证明三角形相似是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网