题目内容

12.如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A处测得建筑物CD的顶点C的俯角∠EAC=30°,测得底部D点的俯角∠EAD=45°.
(1)求两建筑物之间水平距离BD的长度;
(2)求建筑物CD的高度(结果保留根号).

分析 (1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;
(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.

解答 解:(1)根据题意得:BD∥AE,
∴∠ADB=∠EAD=45°,
∵∠ABD=90°,
∴∠BAD=∠ADB=45°,
∴BD=AB=60米,
答:两建筑物底部之间水平距离BD的长度为60米;
(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,
∴AF=BD=DF=60米,
在Rt△AFC中,∠FAC=30°,
∴CF=AF•tan∠FAC=60×$\frac{\sqrt{3}}{3}$=20$\sqrt{3}$米,
又∵FD=60米,
∴CD=60-20$\sqrt{3}$(米).
答:建筑物CD的高度为(60-20$\sqrt{3}$)米.

点评 本题考查的是解直角三角形的应用-仰角俯角问题,正确标注仰角和俯角、熟记锐角三角函数的定义是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网