题目内容

10.如图,点O是线段AB和线段CD的中点.
(1)求证:△AOD≌△BOC;
(2)求证:AD∥BC.

分析 (1)由点O是线段AB和线段CD的中点可得出AO=BO,CO=DO,结合对顶角相等,即可利用全等三角形的判定定理(SAS)证出△AOD≌△BOC;
(2)结合全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.

解答 证明:(1)∵点O是线段AB和线段CD的中点,
∴AO=BO,CO=DO.
在△AOD和△BOC中,有$\left\{\begin{array}{l}{AO=BO}\\{∠AOD=∠BOC}\\{CO=DO}\end{array}\right.$,
∴△AOD≌△BOC(SAS).
(2)∵△AOD≌△BOC,
∴∠A=∠B,
∴AD∥BC.

点评 本题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:(1)利用SAS证出△AOD≌△BOC;(2)找出∠A=∠B.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网