题目内容


如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为  (度).

 


55

考点: 切线的性质.

分析: 首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.

解答: 解:连接OA,OB,

∵PA、PB分别切⊙O于点A、B,

∴OA⊥PA,OB⊥PB,

即∠PAO=∠PBO=90°,

∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,

∴∠C=∠AOB=55°.

故答案为:55.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网