题目内容

6.如图,已知正方形ABCD的边长为2,E是BC边上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.则CG的最小值为$\sqrt{5}$-1.

分析 取AB得中点O,连接OC,根据题意,G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,所以OC和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,根据勾股定理求出最小CG长度即可.

解答 解:取AB得中点O,连接OC,
根据题意,G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,所以OC和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,
∵四边形ABCD是正方形,
∴∠ABC=90°,
∵正方形ABCD的边长为2,
∴BO=1,BC=2,
∴OC=$\sqrt{O{B}^{2}+B{C}^{2}}$=$\sqrt{5}$,
∴CG的最小值为OC-OG=$\sqrt{5}$-1,
故答案为:$\sqrt{5}$-1.

点评 本题考查了正方形的性质以及勾股定理的运用,根据题意,得到G点的轨迹是以AB中点O为圆心,AO为半径的圆弧是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网