题目内容

2.不等式组:$\left\{\begin{array}{l}{x+6≤3x+4}\\{\frac{1+2x}{3}>x-1}\end{array}\right.$的解集为1≤x<4.

分析 先求出不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.

解答 解:$\left\{\begin{array}{l}{x+6≤3x+4①}\\{\frac{1+2x}{3}>x-1②}\end{array}\right.$
∵解不等式①得:x≥1,
解不等式②得:x<4,
∴不等式组的解集为1≤x<4.
故答案为:1≤x<4.

点评 本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网