题目内容

如图,△ABC中,AB=AC=5,BC=6,AD是BC边上的中线且AD=4,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为
 
考点:轴对称-最短路线问题
专题:
分析:作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.
解答:解:作BM⊥AC于M,交AD于F,
∵AB=AC=5,BC=6,AD是BC边上的中线,
∴BD=DC=3,AD⊥BC,AD平分∠BAC,
∴B、C关于AD对称,
∴BF=CF,
根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,
即CF+EF≥BM,
∵S△ABC=
1
2
×BC×AD=
1
2
×AC×BM,
∴BM=
BC•AD
AC
=
6×4
5
=
24
5

即CF+EF的最小值是
24
5

故答案为:
24
5
点评:本题考查了轴对称-最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网