题目内容
5.观察下列一组图形,它反映了图中点的个数与第n图形之间的某种变化规律,(1)填写下表:
| 第n个图形 | 1 | 2 | 3 | 4 |
| 图中所有点的个数 | 3 | 6 | 10 | 15 |
(3)求出第10个图形中S的值.
分析 由图形可知:第1个图形中点的个数为1+2=3个,第2个图形中点的个数为1+2+3=6个,第3个图形中点的个数为1+2+3+4=10个,…第n个图形中点的个数为1+2+3+…+n+n+1=$\frac{1}{2}$(n+1)(n+2)个,由此规律填表,代入计算即可.
解答 解:(1)填写下表:
| 第n个图形 | 1 | 2 | 3 | 4 |
| 图中所有点的个数 | 3 | 6 | 10 | 15 |
(3)第10个图形中S=$\frac{1}{2}$(10+1)(10+2)=66个.
点评 此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.
练习册系列答案
相关题目
13.为了了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,那么这批电视机中,每台电视机的使用寿命是这个问题的( )
| A. | 个体 | B. | 总体 | C. | 总体的一个样本 | D. | 样本容量 |
20.为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min),绘制成如下统计表(其中A表示0~10min;B表示11~20min;C表示21~30min,时间取整数):
(1)统计表中的a=25;b=12.5%;c=40.
(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示.
(3)该校八年级共有240学生,求每天干家务活的平均时间在11~20min的学生人数.
| 干家务活平均时间 | 频数 | 百分比 |
| A | 10 | 25% |
| B | a | 62.5% |
| C | 5 | b |
| 合计 | c | 1 |
(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示.
(3)该校八年级共有240学生,求每天干家务活的平均时间在11~20min的学生人数.