题目内容

12.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为x=1,下列结论:
(1)方程ax2+bx+c=0的两个根为x1=-1,x2=3;
(2)ac>0;
(3)16a+4b+c>0;
其中正确的有(  )
A.0个B.1个C.2个D.3个

分析 由函数图象可得抛物线开口向下,得到a小于0,又抛物线与y轴的交点在y轴正半轴,得到c大于0,进而得到a与c异号,根据两数相乘积为负得到ac小于0,即可判断(2);由抛物线与x轴的交点为(3,0)及对称轴为x=1,利用对称性得到抛物线与x轴另一个交点为(-1,0),进而得到方程ax2+bx+c=0的两根分别为-1和3,即可判断(1);把x=4代入关系式,利用y的值判断(3)即可.

解答 解:由二次函数y=ax2+bx+c的图象可得:抛物线开口向下,即a<0,
抛物线与y轴的交点在y轴正半轴,即c>0,
ac<0,(2)错误;
由图象可得抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,
抛物线与x轴的另一个交点为(-1,0),
则方程ax2+bx+c=0的两根是x1=-1,x2=3,(1)正确.
把x=4代入y=ax2+bx+c=16a+4b+c,因为y<0,可得:16a+4b+c<0,所以(3)错误;
故选B

点评 本题考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网