题目内容

( 本小题满分10分)如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:

⑴△AEH≌△CGF;

⑵四边形EFGH是菱形.

(1)证明见试题解析;(2)证明见试题解析. 【解析】试题分析:(1)、由全等三角形的判定定理SAS证得结论;(2)、易证四边形EFGH是平行四边形,那么EF∥GH,那么∠HGE=∠FEG,而EG是角平分线,易得∠HEG=∠FEG,根据等量代换可得∠HEG=∠HGE,从而有HE=HG,易证四边形EFGH是菱形. 试题解析:(1)、如图,∵四边形ABCD是平行四边形, ∴∠A=∠C, ...
练习册系列答案
相关题目

二次函数y=ax2+bx+c满足b2=ac,且x=0时,y=﹣4,则(  )

A. y最大=﹣4 B. y最小=﹣4 C. y最大=﹣3 D. y最小=﹣3

C 【解析】试题分析:将x=0,y=-4代入可得:c=-4,根据可得: ,故函数有最大值,则最大值为: ,故选C.

如图,在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70°方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的(  )

A. 北偏东20°方向上 B. 北偏西20°方向上

C. 北偏西30°方向上 D. 北偏西40°方向上

B 【解析】试题分析:根据题意可得:∠DAB=70°,AD∥BE,AC=10,AB=8,BC=6,根据勾股定理的逆定理可知∠ABC=90°,根据平行线的性质可得:∠ABE=110°,则∠CBE=110°-90°=20°,即点C在点B的北偏西20°方向上.

一个平行四边形两对角之和为116°,则相邻的两内角分别是__________和_________.

58° 122° 【解析】试题解析: 如图所示: ∵四边形ABCD是平行四边形, 故答案为:58°;122°.

如图,在□ABCD中,点M为CD的中点,且DC=2AD,则AM与BM的夹角的度数为(   )

A. 100° B. 95° C. 90° D. 85°

C 【解析】试题解析: 中, ∴DC∥AB,AD∥BC, ∴∠DAB+∠CBA=180°,∠BAM=∠DMA, ∵点M为CD的中点,且DC=2AD, ∴DM=AD, ∴∠DMA=∠DAM, ∴∠DAM=∠BAM, 同理∠ABM=∠CBM, 即: ∴∠AMB=180°-90°=90°. 故选C.

若n边形的每个内角都等于150°,则n=_____.

12 【解析】试题解析:由题意可得: 解得 故多边形是12边形. 故答案为:12.

下列关于分式方程增根的说法正确的是( )

A.使所有的分母的值都为零的解是增根

B.分式方程的解为零就是增根

C.使分子的值为零的解就是增根

D.使最简公分母的值为零的解是增根

D 【解析】 试题分析:分式方程的增根是最简公分母为零时,未知数的值. 【解析】 分式方程的增根是使最简公分母的值为零的解. 故选D.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网